2.43 Problems 4201 to 4300

Table 2.43: Main lookup table

#

ODE

Mathematica result

Maple result

4201

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

4202

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

4203

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4204

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

4205

\[ {}x y^{\prime \prime }+y = 0 \]

4206

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

4207

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

4208

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

4209

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

4210

\[ {}y^{\prime \prime }+\frac {a y}{x^{\frac {3}{2}}} = 0 \]

4211

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

4212

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

4213

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

4214

\[ {}x^{3} y^{\prime \prime }+y = x^{\frac {3}{2}} \]

4215

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

4216

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

4217

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

4218

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

4219

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

4220

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

4221

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

4222

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

4223

\[ {}y^{2}+y^{\prime } = \frac {a^{2}}{x^{4}} \]

4224

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{\frac {2}{3}}} = 0 \]

4225

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4226

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4227

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

4228

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

4229

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

4230

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

4231

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

4232

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

4233

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

4234

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

4235

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

4236

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

4237

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

4238

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4239

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

4240

\[ {}y^{\prime } = y \]

4241

\[ {}x y^{\prime } = y \]

4242

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

4243

\[ {}\sin \relax (x ) y^{\prime } = y \ln \relax (y) \]

4244

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

4245

\[ {}x y y^{\prime }-x y = y \]

4246

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]

4247

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]

4248

\[ {}y^{\prime }+2 x y^{2} = 0 \]

4249

\[ {}\left (y+1\right ) y^{\prime } = y \]

4250

\[ {}y^{\prime }-x y = x \]

4251

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{\frac {1}{3}} \]

4252

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]

4253

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

4254

\[ {}x^{2} y^{\prime }+3 x y = 1 \]

4255

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

4256

\[ {}2 x y^{\prime }+y = 2 x^{\frac {5}{2}} \]

4257

\[ {}\cos \relax (x ) y^{\prime }+y = \cos ^{2}\relax (x ) \]

4258

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

4259

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

4260

\[ {}x \ln \relax (x ) y^{\prime }+y = \ln \relax (x ) \]

4261

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+2 x \sqrt {-x^{2}+1} \]

4262

\[ {}y^{\prime }+y \tanh \relax (x ) = 2 \,{\mathrm e}^{x} \]

4263

\[ {}y^{\prime }+y \cos \relax (x ) = \sin \left (2 x \right ) \]

4264

\[ {}x^{\prime } = \cos \relax (y )-x \tan \relax (y ) \]

4265

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

4266

\[ {}x^{\prime } = \frac {3 y^{\frac {2}{3}}-x}{3 y} \]

4267

\[ {}y^{\prime }+y = x y^{\frac {2}{3}} \]

4268

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{\frac {3}{2}} \sqrt {y} \]

4269

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

4270

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

4271

\[ {}\left (x -y\right ) y^{\prime }+1+x +y = 0 \]

4272

\[ {}\cos \relax (x ) \cos \relax (y)+\sin ^{2}\relax (x )-\left (\sin \relax (x ) \sin \relax (y)+\cos ^{2}\relax (y)\right ) y^{\prime } = 0 \]

4273

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

4274

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

4275

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

4276

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

4277

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

4278

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

4279

\[ {}\left (-1+x \right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

4280

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

4281

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

4282

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

4283

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

4284

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

4285

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

4286

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

4287

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

4288

\[ {}y^{\prime \prime }+16 y = 0 \]

4289

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

4290

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

4291

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4292

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

4293

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4294

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4295

\[ {}y^{\prime \prime \prime }+y = 0 \]

4296

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

4297

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

4298

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

4299

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

4300

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]