2.47 Problems 4601 to 4700

Table 2.47: Main lookup table

#

ODE

Mathematica result

Maple result

4601

\[ {}2 y^{\prime }+y = y^{3} \left (-1+x \right ) \]

4602

\[ {}y^{\prime }-2 y \tan \relax (x ) = y^{2} \left (\tan ^{2}\relax (x )\right ) \]

4603

\[ {}y^{\prime }+y \tan \relax (x ) = y^{3} \left (\sec ^{4}\relax (x )\right ) \]

4604

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1+x y \]

4605

\[ {}x y y^{\prime }-\left (1+x \right ) \sqrt {y-1} = 0 \]

4606

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

4607

\[ {}y^{\prime }-y \cot \relax (x ) = y^{2} \left (\sec ^{2}\relax (x )\right ) \]

4608

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

4609

\[ {}y^{\prime }-y \tan \relax (x ) = \cos \relax (x )-2 x \sin \relax (x ) \]

4610

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

4611

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \]

4612

\[ {}x y^{\prime }+2 y = 3 x -1 \]

4613

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]

4614

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]

4615

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]

4616

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

4617

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

4618

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]

4619

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

4620

\[ {}y^{\prime }+\frac {y}{x} = \sin \relax (x ) \]

4621

\[ {}y^{\prime }+x +x y^{2} = 0 \]

4622

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

4623

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = \left (x^{2}+1\right )^{\frac {3}{2}} \]

4624

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

4625

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]

4626

\[ {}y^{\prime }+y \cot \relax (x ) = \cos \relax (x ) \]

4627

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

4628

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

4629

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

4630

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

4631

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

4632

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \relax (x ) \]

4633

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]

4634

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

4635

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

4636

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

4637

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

4638

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

4639

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \relax (x ) \]

4640

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

4641

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

4642

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \left (\cos ^{2}\relax (x )\right ) \]

4643

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

4644

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

4645

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \relax (x ) \]

4646

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]

4647

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \relax (t ) \]

4648

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \relax (t ) \]

4649

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \relax (x ) \]

4650

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

4651

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]

4652

\[ {}y^{\prime \prime } = 3 \sin \relax (x )-4 y \]

4653

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]

4654

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \relax (t ) \]

4655

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

4656

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

4657

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

4658

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

4659

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

4660

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

4661

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

4662

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

4663

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

4664

\[ {}y^{\prime }-5 y = \left (-1+x \right ) \sin \relax (x )+\left (1+x \right ) \cos \relax (x ) \]

4665

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

4666

\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \]

4667

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

4668

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

4669

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \relax (x ) \]

4670

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

4671

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

4672

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

4673

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

4674

\[ {}y^{\prime }-y = \sin \relax (x )+\cos \left (2 x \right ) \]

4675

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

4676

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \relax (x ) \]

4677

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

4678

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

4679

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

4680

\[ {}x^{\prime \prime }+4 x = \sin ^{2}\left (2 t \right ) \]

4681

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \relax (t ) \]

4682

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

4683

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

4684

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

4685

\[ {}y^{\prime \prime }+y = \sec \relax (x ) \]

4686

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

4687

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

4688

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

4689

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \relax (x ) \]

4690

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = {\mathrm e}^{x} x^{3} \]

4691

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

4692

\[ {}y^{\prime }+2 y = 0 \]

4693

\[ {}y^{\prime }+2 y = 2 \]

4694

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

4695

\[ {}y^{\prime \prime }-y = 0 \]

4696

\[ {}y^{\prime \prime }-y = \sin \relax (x ) \]

4697

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

4698

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]

4699

\[ {}y^{\prime \prime }+y = \sin \relax (x ) \]

4700

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]