2.46 Problems 4501 to 4600

Table 2.46: Main lookup table

#

ODE

Mathematica result

Maple result

4501

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

4502

\[ {}\sin \relax (x ) y^{\prime \prime }-y \ln \relax (x ) = 0 \]

4503

\[ {}y^{\prime }+\left (2+x \right ) y = 0 \]

4504

\[ {}y^{\prime }-y = 0 \]

4505

\[ {}z^{\prime }-x^{2} z = 0 \]

4506

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

4507

\[ {}y^{\prime \prime }+\left (-1+x \right ) y^{\prime }+y = 0 \]

4508

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

4509

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

4510

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

4511

\[ {}\left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

4512

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

4513

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

4514

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

4515

\[ {}y^{\prime \prime }-\tan \relax (x ) y^{\prime }+y = 0 \]

4516

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

4517

\[ {}y^{\prime }+2 \left (-1+x \right ) y = 0 \]

4518

\[ {}y^{\prime }-2 x y = 0 \]

4519

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

4520

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

4521

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

4522

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

4523

\[ {}x^{\prime }+\sin \relax (t ) x = 0 \]

4524

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

4525

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

4526

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

4527

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \relax (x ) = 0 \]

4528

\[ {}y^{\prime }-x y = \sin \relax (x ) \]

4529

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

4530

\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

4531

\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

4532

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \relax (x ) \]

4533

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \relax (x ) \]

4534

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \relax (x ) \]

4535

\[ {}y^{\prime \prime }-\sin \relax (x ) y = \cos \relax (x ) \]

4536

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

4537

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

4538

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

4539

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]

4540

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

4541

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

4542

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

4543

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]

4544

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \relax (x ) \]

4545

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

4546

\[ {}y^{\prime \prime }-y = \cosh \relax (x ) \]

4547

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

4548

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]

4549

\[ {}y^{\prime }+y = \left (1+x \right )^{2} \]

4550

\[ {}x^{2} y^{\prime }+2 x y = \sinh \relax (x ) \]

4551

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

4552

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

4553

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x y \]

4554

\[ {}y^{\prime }+x y = x y^{2} \]

4555

\[ {}3 x y^{\prime }+y+x^{2} y^{4} = 0 \]

4556

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

4557

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

4558

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

4559

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

4560

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

4561

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

4562

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

4563

\[ {}x \left (-1+x \right )^{2} y^{\prime \prime }-2 y = 0 \]

4564

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

4565

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

4566

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

4567

\[ {}x y^{\prime } = x^{2}+2 x -3 \]

4568

\[ {}\left (1+x \right )^{2} y^{\prime } = 1+y^{2} \]

4569

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

4570

\[ {}-y+x y^{\prime } = x^{2} \]

4571

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

4572

\[ {}x \cos \relax (y) y^{\prime }-\sin \relax (y) = 0 \]

4573

\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \]

4574

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

4575

\[ {}y^{\prime }+y \tanh \relax (x ) = 2 \sinh \relax (x ) \]

4576

\[ {}x y^{\prime }-2 y = x^{3} \cos \relax (x ) \]

4577

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

4578

\[ {}x y^{\prime }+3 y = x^{2} y^{2} \]

4579

\[ {}x \left (y-3\right ) y^{\prime } = 4 y \]

4580

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]

4581

\[ {}x^{3}+\left (y+1\right )^{2} y^{\prime } = 0 \]

4582

\[ {}\cos \relax (y)+\left (1+{\mathrm e}^{-x}\right ) \sin \relax (y) y^{\prime } = 0 \]

4583

\[ {}x^{2} \left (y+1\right )+y^{2} \left (-1+x \right ) y^{\prime } = 0 \]

4584

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

4585

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

4586

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

4587

\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \]

4588

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

4589

\[ {}-y+x y^{\prime } = x^{3}+3 x^{2}-2 x \]

4590

\[ {}y^{\prime }+y \tan \relax (x ) = \sin \relax (x ) \]

4591

\[ {}-y+x y^{\prime } = x^{3} \cos \relax (x ) \]

4592

\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x y = 5 x \]

4593

\[ {}y^{\prime }+y \cot \relax (x ) = 5 \,{\mathrm e}^{\cos \relax (x )} \]

4594

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

4595

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

4596

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

4597

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

4598

\[ {}y \left (1+x y\right )+x \left (1+x y+x^{2} y^{2}\right ) y^{\prime } = 0 \]

4599

\[ {}y^{\prime }+y = x y^{3} \]

4600

\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \]