# |
ODE |
Mathematica result |
Maple result |
\[ {}2 \left (-1+x \right ) y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 4 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y = 0 \] |
✓ |
✗ |
|
\[ {}x^{3} y^{\prime } = 2 y \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (-1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (-1+x \right ) y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y \,{\mathrm e}^{-x} = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\sin \relax (x ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x y \] |
✓ |
✓ |
|
\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \] |
✓ |
✓ |
|
\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \] | ✓ | ✓ |
|
\[ {}y+y^{\prime } = 1+t \,{\mathrm e}^{-t} \] | ✓ | ✓ |
|
\[ {}\frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}-2 y+y^{\prime } = 3 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}2 y+t y^{\prime } = \sin \relax (t ) \] |
✓ |
✓ |
|
\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y+2 y^{\prime } = 3 t \] |
✓ |
✓ |
|
\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 5 \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y+2 y^{\prime } = 3 t^{2} \] |
✓ |
✓ |
|
\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{2 t} t \] |
✓ |
✓ |
|
\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}2 y+t y^{\prime } = t^{2}-t +1 \] |
✓ |
✓ |
|
\[ {}\frac {2 y}{t}+y^{\prime } = \frac {\cos \relax (t )}{t^{2}} \] |
✓ |
✓ |
|
\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}2 y+t y^{\prime } = \sin \relax (t ) \] |
✓ |
✓ |
|
\[ {}4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}\left (t +1\right ) y+t y^{\prime } = t \] |
✓ |
✓ |
|
\[ {}-\frac {y}{2}+y^{\prime } = 2 \cos \relax (t ) \] |
✓ |
✓ |
|
\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \] |
✓ |
✓ |
|
\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \] |
✓ |
✓ |
|
\[ {}\left (t +1\right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}2 y+t y^{\prime } = \frac {\sin \relax (t )}{t} \] |
✓ |
✓ |
|
\[ {}\cos \relax (t ) y+\sin \relax (t ) y^{\prime } = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}\frac {y}{2}+y^{\prime } = 2 \cos \relax (t ) \] |
✓ |
✓ |
|
\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \] |
✓ |
✓ |
|
\[ {}\frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}-y+y^{\prime } = 1+3 \sin \relax (t ) \] |
✓ |
✓ |
|
\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\cos ^{2}\relax (x )\right ) \left (\cos ^{2}\left (2 y\right )\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (-2 x +1\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x +1}{y} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \] |
✓ |
✓ |
|
\[ {}r^{\prime } = \frac {r^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x}{1+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \] |
✓ |
✓ |
|
\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \] |
✓ |
✓ |
|