# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (y+1\right ) y^{\prime } = -x^{2}+1 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime } = \left (1+x \right ) x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \] |
✓ |
✓ |
|
\[ {}2 y-x^{3} = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-3 y = x^{4} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = 2 x \csc \relax (x ) \] |
✓ |
✓ |
|
\[ {}y-x +x y \cot \relax (x )+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ | |
\[ {}x \ln \relax (x ) y^{\prime }+y = 3 x^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y = 2 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{4} y^{3} \] |
✓ |
✓ |
|
\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x y^{4} \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 x^{2} y+y \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \] |
✓ |
✓ | |
\[ {}\sin \relax (x ) \tan \relax (y)+1+\cos \relax (x ) \left (\sec ^{2}\relax (x )\right ) y y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ | |
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) \left (\cos ^{2}\relax (y)\right )+2 \sin \relax (x ) \sin \relax (y) \cos \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sin \relax (x ) \sin \relax (y)-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \relax (x ) \cos \relax (y) \] |
✓ |
✓ |
|
\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}+\cos \relax (x ) y+\left (3 x^{2} y^{2}+\sin \relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \] |
✓ |
✓ |
|
\[ {}2 x y^{4}+\sin \relax (y)+\left (4 x^{2} y^{3}+x \cos \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \] |
✓ |
✓ |
|
\[ {}x \ln \relax (y)+x y+\left (y \ln \relax (x )+x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{2}}-\csc \relax (y) \left (\csc ^{2}\relax (x )\right )+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \relax (y) \cot \relax (y) \cot \relax (x )\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}1+y^{2} \sin \left (2 x \right )-2 y \left (\cos ^{2}\relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} \left (1+\ln \relax (y)\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \] | ✓ | ✓ |
|
\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \] |
✓ |
✓ |
|
\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 x -6 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+2 x y \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \] |
✓ |
✓ |
|
\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \] |
✓ |
✓ |
|
\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \relax (y)+2 y \csc \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) \sin \relax (y)+x \cos \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \ln \relax (y)-2 x y+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime } = y^{\prime }+\left (y^{\prime }\right )^{3} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }-k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime } = 1+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-\left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 1+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\sec \relax (x ) y^{\prime } = \sec \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \] |
✓ |
✓ |
|