# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime \prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (5)}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = \sin \relax (x )+24 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \tan ^{2}\relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \frac {-1+x}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -3 y \] |
✓ | ✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (y) = 0 \] | ✓ | ✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (-1+x \right ) y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+3 x y = 0 \] |
✓ |
✗ |
|
\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\sin \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\sin \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+\sin \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+\sin \relax (x ) y = 0 \] |
✓ |
✗ |
|
\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \] |
✓ |
✓ |
|