2.57 Problems 5601 to 5700

Table 2.57: Main lookup table

#

ODE

Mathematica result

Maple result

5601

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

5602

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

5603

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

5604

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

5605

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

5606

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

5607

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

5608

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

5609

\[ {}y^{\relax (5)}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

5610

\[ {}y^{\prime \prime \prime \prime } = 0 \]

5611

\[ {}y^{\prime \prime \prime \prime } = \sin \relax (x )+24 \]

5612

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

5613

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]

5614

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

5615

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

5616

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

5617

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

5618

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

5619

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

5620

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

5621

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

5622

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

5623

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

5624

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \]

5625

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

5626

\[ {}y^{\prime \prime }+9 y = 0 \]

5627

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]

5628

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]

5629

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \relax (x ) \]

5630

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]

5631

\[ {}y^{\prime \prime }-y = \cos \relax (x ) \]

5632

\[ {}y^{\prime \prime } = \tan \relax (x ) \]

5633

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \relax (x ) \]

5634

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

5635

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

5636

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \relax (x ) \]

5637

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \relax (x ) \]

5638

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

5639

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \relax (x ) \]

5640

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

5641

\[ {}y^{\prime \prime }+4 y = \tan ^{2}\relax (x ) \]

5642

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]

5643

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]

5644

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]

5645

\[ {}y^{\prime \prime }+y^{\prime } = \frac {-1+x}{x} \]

5646

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

5647

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

5648

\[ {}y^{\prime }+y = \cos \relax (x ) \]

5649

\[ {}y^{\prime \prime } = -3 y \]

5650

\[ {}y^{\prime \prime }+\sin \relax (y) = 0 \]

5651

\[ {}y^{\prime } = 2 x y \]

5652

\[ {}y^{\prime } = 2 x y \]

5653

\[ {}y^{\prime }+y = 1 \]

5654

\[ {}y^{\prime }+y = 1 \]

5655

\[ {}y^{\prime }-y = 2 \]

5656

\[ {}y^{\prime }-y = 2 \]

5657

\[ {}y^{\prime }+y = 0 \]

5658

\[ {}y^{\prime }+y = 0 \]

5659

\[ {}y^{\prime }-y = 0 \]

5660

\[ {}y^{\prime }-y = 0 \]

5661

\[ {}y^{\prime }-y = x^{2} \]

5662

\[ {}y^{\prime }-y = x^{2} \]

5663

\[ {}x y^{\prime } = y \]

5664

\[ {}x y^{\prime } = y \]

5665

\[ {}x^{2} y^{\prime } = y \]

5666

\[ {}x^{2} y^{\prime } = y \]

5667

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

5668

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

5669

\[ {}y^{\prime }+\frac {y}{x} = x \]

5670

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

5671

\[ {}y^{\prime } = y+1 \]

5672

\[ {}y^{\prime } = x -y \]

5673

\[ {}y^{\prime } = x -y \]

5674

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

5675

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

5676

\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \]

5677

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

5678

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5679

\[ {}y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

5680

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

5681

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

5682

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

5683

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

5684

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

5685

\[ {}y^{\prime \prime }+x y = 0 \]

5686

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

5687

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \]

5688

\[ {}x^{3} \left (-1+x \right ) y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+3 x y = 0 \]

5689

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

5690

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

5691

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

5692

\[ {}y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5693

\[ {}x y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5694

\[ {}x^{2} y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5695

\[ {}x^{3} y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5696

\[ {}x^{4} y^{\prime \prime }+\sin \relax (x ) y = 0 \]

5697

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

5698

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

5699

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \]

5700

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]