# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \relax (x )}{\left (x -1\right )^{4}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = \frac {2}{x^{2}}+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \relax (x ) = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime }+2 y = \frac {\sin \relax (x )}{x +1} \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (-2+x \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 \sin \relax (x ) \cos \relax (x ) y = {\mathrm e}^{-\left (\sin ^{2}\relax (x )\right )} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+4 x y = \frac {2}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+3 y = \frac {2}{x \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cot \relax (x ) y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \relax (x )}{\left (x -1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = 8 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = -x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = x \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \left (\sec ^{2}\relax (x )\right )}{\left (x -1\right )^{3}} \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (2+x \right )^{3}} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = -1 \] |
✓ |
✓ |
|
\[ {}\left (\sec ^{2}\relax (y)\right ) y^{\prime }-3 \tan \relax (y) = -1 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime }}{y}+2 \ln \relax (y) = 4 x^{2} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\left (y+1\right )^{2}}-\frac {1}{x \left (y+1\right )} = -\frac {3}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{y-2} \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) \sin \relax (y)+\cos \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 y^{3}+3 y \cos \relax (y)+1\right ) y^{\prime }+\frac {\left (1+2 x \right ) y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (y-2\right ) \] |
✓ |
✓ |
|
\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{y-2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {\left (y+1\right ) \left (y-1\right ) \left (y-2\right )}{x +1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x \left (y+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x}{1+2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-y^{2} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x^{2} \left (y+1\right ) \left (y-2\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) \left (-2+x \right ) y^{\prime }+y = 0 \] | ✓ | ✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \] | ✓ | ✓ |
|
\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \relax (x )}{\sin \relax (y)} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y-b y^{2} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = \frac {2 x \,{\mathrm e}^{-x}}{1+y \,{\mathrm e}^{x}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = \frac {x^{6}}{x^{2}+y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \relax (x )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {y+{\mathrm e}^{x}}{x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \tan \left (x y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{\frac {1}{3}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x \left (y^{2}-1\right )^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\tan \relax (y)}{x -1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {2}{5}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x \left (y-1\right )^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}7 x y^{\prime }-2 y = -\frac {x^{2}}{y^{6}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \frac {1}{\left (x^{2}+1\right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = x^{3} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\left (x +1\right ) y}{3 x} = y^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = x y^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = x^{4} y^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = x^{2}+2 y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \] |
✓ |
✓ |
|