2.9 Problems 801 to 900

Table 2.9: Main lookup table

#

ODE

Mathematica result

Maple result

801

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )] \]

802

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2}\relax (t )] \]

803

\[ {}\left [x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-\frac {5 x_{2}\relax (t )}{2}, x_{2}^{\prime }\relax (t ) = \frac {9 x_{1}\relax (t )}{5}-x_{2}\relax (t )\right ] \]

804

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )-2, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )] \]

805

\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t )-2, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+1] \]

806

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )-1, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )+5] \]

807

\[ {}[x^{\prime }\relax (t ) = -x \relax (t ), y^{\prime }\relax (t ) = -2 y \relax (t )] \]

808

\[ {}[x^{\prime }\relax (t ) = -x \relax (t ), y^{\prime }\relax (t ) = 2 y \relax (t )] \]

809

\[ {}[x^{\prime }\relax (t ) = -x \relax (t ), y^{\prime }\relax (t ) = 2 y \relax (t )] \]

810

\[ {}[x^{\prime }\relax (t ) = -y \relax (t ), y^{\prime }\relax (t ) = x \relax (t )] \]

811

\[ {}[x^{\prime }\relax (t ) = -y \relax (t ), y^{\prime }\relax (t ) = x \relax (t )] \]

812

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

813

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

814

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

815

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

816

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

817

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

818

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

819

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

820

\[ {}\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

821

\[ {}t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (2+t \right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0 \]

822

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

823

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

824

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

825

\[ {}y^{\relax (6)}+y = 0 \]

826

\[ {}y^{\relax (6)}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

827

\[ {}y^{\relax (6)}-y^{\prime \prime } = 0 \]

828

\[ {}y^{\relax (5)}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

829

\[ {}y^{\relax (8)}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

830

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

831

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

832

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

833

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

834

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

835

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

836

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

837

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

838

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

839

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]

840

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]

841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

842

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]

843

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]

844

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]

845

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]

846

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \mathit {otherwise} \end {array}\right . \]

847

\[ {}y^{\prime \prime }+4 y = \sin \relax (t )-\theta \left (-2 \pi +t \right ) \sin \relax (t ) \]

848

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \mathit {otherwise} \end {array}\right . \]

849

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\theta \left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

850

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \relax (t ) & 0\le t <\pi \\ 0 & \mathit {otherwise} \end {array}\right . \]

851

\[ {}y^{\prime \prime }+4 y = \theta \left (-\pi +t \right )-\theta \left (-3 \pi +t \right ) \]

852

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\theta \left (-\pi +t \right ) \]

853

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = k \left (\theta \left (t -\frac {3}{2}\right )-\theta \left (t -\frac {5}{2}\right )\right ) \]

854

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\theta \left (t -\frac {3}{2}\right )}{2}-\frac {\theta \left (t -\frac {5}{2}\right )}{2} \]

855

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\theta \left (t -5\right ) \left (t -5\right )-\theta \left (t -5-k \right ) \left (t -5-k \right )}{k} \]

856

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (-\pi +t \right ) \]

857

\[ {}y^{\prime \prime }+4 y = \delta \left (-\pi +t \right )-\delta \left (-2 \pi +t \right ) \]

858

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -5\right )+\theta \left (-10+t \right ) \]

859

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \relax (t )+\delta \left (-3 \pi +t \right ) \]

860

\[ {}y^{\prime \prime }+y = \delta \left (-2 \pi +t \right ) \cos \relax (t ) \]

861

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

862

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \relax (t )+\delta \left (t -\frac {\pi }{2}\right ) \]

863

\[ {}y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

864

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

865

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

866

\[ {}y^{\prime \prime }+y = \frac {\theta \left (t -4+k \right )-\theta \left (t -4-k \right )}{2 k} \]

867

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \relax (t ) \]

868

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (-\pi +t \right ) \]

869

\[ {}y^{\prime } = 2 y \]

870

\[ {}y+x y^{\prime } = x^{2} \]

871

\[ {}y^{\prime }+2 x y = x \]

872

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

873

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

874

\[ {}y^{\prime } = -x \]

875

\[ {}y^{\prime } = -x \sin \relax (x ) \]

876

\[ {}y^{\prime } = \ln \relax (x ) x \]

877

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]

878

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

879

\[ {}y^{\prime } = \tan \relax (x ) \]

880

\[ {}y^{\prime } = \cos \relax (x )-y \tan \relax (x ) \]

881

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]

882

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]

883

\[ {}y^{\prime } = -\frac {y \left (y+1\right )}{x} \]

884

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

885

\[ {}y^{\prime } = {| y|}+1 \]

886

\[ {}y^{\prime } = -1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \]

887

\[ {}y^{\prime }+a y = 0 \]

888

\[ {}y^{\prime }+3 x^{2} y = 0 \]

889

\[ {}x y^{\prime }+y \ln \relax (x ) = 0 \]

890

\[ {}x y^{\prime }+3 y = 0 \]

891

\[ {}x^{2} y^{\prime }+y = 0 \]

892

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]

893

\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \relax (x )}\right ) y = 0 \]

894

\[ {}x y^{\prime }+\left (1+x \cot \relax (x )\right ) y = 0 \]

895

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]

896

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]

897

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]

898

\[ {}y^{\prime }+3 y = 1 \]

899

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

900

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]