# |
ODE |
Mathematica result |
Maple result |
\[ {}2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \] |
✓ |
✗ |
|
\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (t +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}2 \sin \relax (t ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+4 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+2 x_{2}\relax (t )+3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 7 x_{1}\relax (t )-x_{2}\relax (t )+6 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -10 x_{1}\relax (t )+4 x_{2}\relax (t )-12 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -7 x_{1}\relax (t )+6 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1}\relax (t )+2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )+3 x_{3}\relax (t )+6 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+6 x_{2}\relax (t )+9 x_{3}\relax (t )+18 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+10 x_{2}\relax (t )+15 x_{3}\relax (t )+30 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 7 x_{1}\relax (t )+14 x_{2}\relax (t )+21 x_{3}\relax (t )+42 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+3 x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+10 x_{2}\relax (t )+2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -x_{2}\relax (t )-2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )-3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1}\relax (t ), x_{3}^{\prime }\relax (t ) = -3 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )+3 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-3 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{2}\relax (t )+4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = -x_{3}\relax (t )+2 x_{4}\relax (t )] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t )+3 x_{3}\relax (t )] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -4 x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 10 x_{1}\relax (t )+9 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -4 x_{1}\relax (t )-3 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )-3 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )+4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = 2 x_{3}\relax (t )+3 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t )+{\mathrm e}^{t} \cos \left (2 t \right )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+{\mathrm e}^{c t}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+5 x_{2}\relax (t )+4 \,{\mathrm e}^{t} \cos \relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t )+\sin \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+\tan \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{2}\relax (t )+f_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+f_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{3}\relax (t )+{\mathrm e}^{2 t}, x_{2}^{\prime }\relax (t ) = 2 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{2}\relax (t )+3 x_{3}\relax (t )+{\mathrm e}^{2 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )-2 x_{3}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )+3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )+{\mathrm e}^{3 t}, x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t )+{\mathrm e}^{3 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )-t^{2}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+2 t] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+2 x_{3}\relax (t )+\sin \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )-3 x_{3}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )+4 x_{3}\relax (t )-{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )+1, x_{2}^{\prime }\relax (t ) = -4 x_{2}\relax (t )-x_{3}\relax (t )+t, x_{3}^{\prime }\relax (t ) = 5 x_{2}\relax (t )+{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t )+{\mathrm e}^{2 t}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+3 x_{2}\relax (t )-4 x_{3}\relax (t )+2 \,{\mathrm e}^{2 t}, x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )-4 x_{3}\relax (t )+{\mathrm e}^{2 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )-x_{3}\relax (t )+{\mathrm e}^{3 t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+x_{3}\relax (t )-{\mathrm e}^{3 t}, x_{3}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t )-{\mathrm e}^{3 t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+4 x_{3}\relax (t )+2 \,{\mathrm e}^{8 t}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+2 x_{3}\relax (t )+{\mathrm e}^{8 t}, x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+2 x_{2}\relax (t )+3 x_{3}\relax (t )+2 \,{\mathrm e}^{8 t}] \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \tan \relax (x )-y = 1 \] |
✓ |
✓ |
|
\[ {}y+3+\cot \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) \left (\cos ^{2}\relax (y)\right )+\left (\cos ^{2}\relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sec \relax (x ) \left (\cos ^{2}\relax (y)\right ) = \cos \relax (x ) \sin \relax (y) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = x y \left (y^{\prime }-1\right ) \] |
✓ |
✓ |
|
\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x y+x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\tan \relax (x ) \left (\sin ^{2}\relax (x )\right )+\left (\cos ^{2}\relax (x )\right ) \cot \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) \cos \relax (y)+\cos \relax (x ) \sin \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \] |
✓ |
✓ |
|
\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \] |
✓ |
✓ |
|
\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \] |
✓ |
✓ |
|
\[ {}x +y = x y^{\prime } \] |
✓ |
✓ |
|