# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = 2 x \csc \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 y-x^{3} = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{2} = \left (x^{3}-x y\right ) y^{\prime } \] |
✓ |
✓ | |
\[ {}x^{2}+y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}y+x y^{\prime } = x \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \] |
✓ |
✓ |
|
\[ {}x^{2}+y = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = x^{2} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} {\mathrm e}^{x y}+\cos \relax (x )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \sin \relax (y)-y \sin \left (x y\right )+\left ({\mathrm e}^{x} \cos \relax (y)-x \sin \left (x y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime } = 2 x y-{\mathrm e}^{y}-x \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x y+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\ln \relax (x ) y^{\prime }+\frac {x +y}{x} = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (y)-x \sin \relax (y) y^{\prime } = \sec ^{2}\relax (x ) \] |
✗ |
✓ |
|
\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -1\right ) y^{\prime } = \cot \relax (y) \] |
✓ |
✓ |
|
\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \relax (y)}{a^{2}+r^{2}} \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } = 2+3 y^{6} \] |
✓ |
✓ |
|
\[ {}\cos ^{2}\relax (y)+\left (1+{\mathrm e}^{-x}\right ) \sin \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \relax (y)} \] |
✓ |
✓ |
|
\[ {}x \left (\cos ^{2}\relax (y)\right )+{\mathrm e}^{x} \tan \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2}\right )+\left (2 y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (\cos ^{2}\relax (y)\right )+\tan \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{3}+\left (y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \cot \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (\cos ^{2}\left (\frac {y}{x}\right )\right )-y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \left (1+\ln \relax (y)-\ln \relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \] | ✓ | ✓ |
|
\[ {}x^{2}-x y+y^{2}-x y y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \] |
✓ |
✓ |
|
\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin ^{2}\left (x -y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (1+4 y\right )^{2}+8 x y+1 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+\ln \relax (y)+\frac {x y^{\prime }}{y} = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3+y+2 y^{2} \left (\sin ^{2}\relax (x )\right )+\left (x +2 x y-y \sin \left (2 x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+\left (x^{2}+2 x y+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-\left (\sin ^{2}\relax (y)\right )+x \sin \left (2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x y+3 y^{2}-x +x \left (2 y+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x \left (y^{2}+\ln \relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (x^{2}-\sin \relax (y)+1\right )+\left (x^{2}+1\right ) \cos \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y+y^{2}-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-2 x^{3} \tan \left (\frac {y}{x}\right )-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y \cos \relax (x )-y^{\prime } \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sin ^{2}\relax (y)+x \cot \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1-\left (1+2 x \tan \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \] |
✓ |
✓ |
|
\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+3 y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (\cos \relax (x )+1\right ) y^{\prime } = \sin \relax (x ) \left (\sin \relax (x )+\sin \relax (x ) \cos \relax (x )-y\right ) \] |
✓ |
✓ |
|