# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = \left (\sin ^{2}\relax (x )-y\right ) \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime }-y = x \left (x +1\right )^{2} \] |
✓ |
✓ |
|
\[ {}1+y+\left (x -y \left (y+1\right )^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2} = x^{2}+1 \] |
✓ |
✓ |
|
\[ {}3 x y^{\prime }-3 x y^{4} \ln \relax (x )-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \] |
✓ |
✓ |
|
\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }+y^{2}-\sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3}-y^{4}+x y^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x )+y^{2} \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\left (y^{\prime }\right )^{3} \] |
✓ |
✓ |
|
\[ {}x \left (\left (y^{\prime }\right )^{2}-1\right ) = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \] |
✓ |
✓ |
|
\[ {}x = y^{\prime } \sqrt {1+\left (y^{\prime }\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 \left (y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+y^{2} \left (y^{\prime }\right )^{3} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}+y^{2} = x y y^{\prime } \] |
✗ |
✓ |
|
\[ {}2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-x^{2} \left (y^{\prime }\right )^{3} \] |
✗ |
✓ |
|
\[ {}y \left (y-2 x y^{\prime }\right )^{3} = \left (y^{\prime }\right )^{2} \] |
✗ |
✓ |
|
\[ {}y+x y^{\prime } = 4 \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y = \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x y^{2} \left (y+x y^{\prime }\right ) = 1 \] |
✓ |
✓ |
|
\[ {}5 y+\left (y^{\prime }\right )^{2} = x \left (x +y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {y+2}{x +1} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}1+y^{2} \sin \left (2 x \right )-2 y \left (\cos ^{2}\relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 \sqrt {x y}-y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (5)}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\relax (6)}-64 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sinh \relax (x ) \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \relax (x ) \sin \relax (x ) \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \relax (x )+x \cos \relax (x ) \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \relax (x ) \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a f \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\sin \relax (x )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}+3 \cosh \relax (x )+2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b x +c y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (x^{2}-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n} y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x ) \cos \relax (x )+y \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\sin \relax (x )}+y \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \csc \relax (x )-y \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \relax (x )\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \relax (x )-y \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \sin \relax (x )+y \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\csc \relax (x )+2 y \cot \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 \csc \relax (x ) x \left (\sec ^{2}\relax (x )\right )-2 y \cot \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \left (\cot ^{2}\relax (x )\right ) \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 \csc \relax (x ) x \left (\sin ^{3}\relax (x )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 \csc \relax (x ) x \left (1-\left (\tan ^{2}\relax (x )\right )+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \relax (x ) = \left (1-y\right ) \sec \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x )+y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x )-y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec \relax (x )-y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (2 x \right )+y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (2 x \right )-y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x )+2 y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2+2 \sec \left (2 x \right )+2 y \tan \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \csc \relax (x )+3 y \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +\cos \left (\ln \relax (x )\right )+\sin \left (\ln \relax (x )\right )\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \relax (x ) f^{\prime }\relax (x )+f^{\prime }\relax (x ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \relax (x )+g \relax (x ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \relax (x )^{2} = f^{\prime }\relax (x )+y^{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime }+1-x = y \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x -\left (x^{2}+1\right ) y+y^{2} \] |
✓ |
✓ |
|