2.38 Problems 3701 to 3800

Table 2.38: Main lookup table

#

ODE

Mathematica result

Maple result

3701

\[ {}y^{2} \left (y^{\prime }\right )^{2}+2 x y y^{\prime }+x^{2} = 0 \]

3702

\[ {}y^{2} \left (y^{\prime }\right )^{2}+2 x y y^{\prime }+a -y^{2} = 0 \]

3703

\[ {}y^{2} \left (y^{\prime }\right )^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

3704

\[ {}y^{2} \left (y^{\prime }\right )^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2} = 0 \]

3705

\[ {}y^{2} \left (y^{\prime }\right )^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +a \,x^{2}+\left (-a +1\right ) y^{2} = 0 \]

3706

\[ {}\left (1-y^{2}\right ) \left (y^{\prime }\right )^{2} = 1 \]

3707

\[ {}\left (a^{2}-y^{2}\right ) \left (y^{\prime }\right )^{2} = y^{2} \]

3708

\[ {}\left (a^{2}-2 y a x +y^{2}\right ) \left (y^{\prime }\right )^{2}+2 a y y^{\prime }+y^{2} = 0 \]

3709

\[ {}\left (\left (-a +1\right ) x^{2}+y^{2}\right ) \left (y^{\prime }\right )^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2} = 0 \]

3710

\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) \left (y^{\prime }\right )^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \]

3711

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) \left (y^{\prime }\right )^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

3712

\[ {}\left (x +y\right )^{2} \left (y^{\prime }\right )^{2} = y^{2} \]

3713

\[ {}\left (x +y\right )^{2} \left (y^{\prime }\right )^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

3714

\[ {}\left (a^{2}-\left (x -y\right )^{2}\right ) \left (y^{\prime }\right )^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0 \]

3715

\[ {}2 y^{2} \left (y^{\prime }\right )^{2}+2 x y y^{\prime }-1+x^{2}+y^{2} = 0 \]

3716

\[ {}3 y^{2} \left (y^{\prime }\right )^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

3717

\[ {}4 y^{2} \left (y^{\prime }\right )^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

3718

\[ {}\left (x^{2}-4 y^{2}\right ) \left (y^{\prime }\right )^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

3719

\[ {}9 y^{2} \left (y^{\prime }\right )^{2}-3 x y^{\prime }+y = 0 \]

3720

\[ {}\left (2-3 y\right )^{2} \left (y^{\prime }\right )^{2} = 4-4 y \]

3721

\[ {}\left (-a^{2}+1\right ) y^{2} \left (y^{\prime }\right )^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

3722

\[ {}\left (a -b \right ) y^{2} \left (y^{\prime }\right )^{2}-2 b x y y^{\prime }-b a -b \,x^{2}+a y^{2} = 0 \]

3723

\[ {}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) \left (y^{\prime }\right )^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

3724

\[ {}x y^{2} \left (y^{\prime }\right )^{2}-y^{3} y^{\prime }+a^{2} x = 0 \]

3725

\[ {}x y^{2} \left (y^{\prime }\right )^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

3726

\[ {}2 x y^{2} \left (y^{\prime }\right )^{2}-y^{3} y^{\prime }-a = 0 \]

3727

\[ {}4 x^{2} y^{2} \left (y^{\prime }\right )^{2} = \left (x^{2}+y^{2}\right )^{2} \]

3728

\[ {}4 y^{3} \left (y^{\prime }\right )^{2}-4 x y^{\prime }+y = 0 \]

3729

\[ {}3 x y^{4} \left (y^{\prime }\right )^{2}-y^{5} y^{\prime }+1 = 0 \]

3730

\[ {}9 x y^{4} \left (y^{\prime }\right )^{2}-3 y^{5} y^{\prime }-a = 0 \]

3731

\[ {}9 \left (-x^{2}+1\right ) y^{4} \left (y^{\prime }\right )^{2}+6 x y^{5} y^{\prime }+4 x^{2} = 0 \]

3732

\[ {}\left (y^{\prime }\right )^{3} = b x +a \]

3733

\[ {}\left (y^{\prime }\right )^{3} = a \,x^{n} \]

3734

\[ {}\left (y^{\prime }\right )^{3}+x -y = 0 \]

3735

\[ {}\left (y^{\prime }\right )^{3} = \left (a +b y+c y^{2}\right ) f \relax (x ) \]

3736

\[ {}\left (y^{\prime }\right )^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

3737

\[ {}\left (y^{\prime }\right )^{3}+f \relax (x ) \left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

3738

\[ {}\left (y^{\prime }\right )^{3}+f \relax (x ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} = 0 \]

3739

\[ {}\left (y^{\prime }\right )^{3}+y^{\prime }+a -b x = 0 \]

3740

\[ {}\left (y^{\prime }\right )^{3}+y^{\prime }-y = 0 \]

3741

\[ {}\left (y^{\prime }\right )^{3}+y^{\prime } = {\mathrm e}^{y} \]

3742

\[ {}\left (y^{\prime }\right )^{3}-7 y^{\prime }+6 = 0 \]

3743

\[ {}\left (y^{\prime }\right )^{3}-x y^{\prime }+a y = 0 \]

3744

\[ {}\left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \]

3745

\[ {}\left (y^{\prime }\right )^{3}-2 x y^{\prime }-y = 0 \]

3746

\[ {}\left (y^{\prime }\right )^{3}-a x y^{\prime }+x^{3} = 0 \]

3747

\[ {}\left (y^{\prime }\right )^{3}+a x y^{\prime }-a y = 0 \]

3748

\[ {}\left (y^{\prime }\right )^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

3749

\[ {}\left (y^{\prime }\right )^{3}-2 y y^{\prime }+y^{2} = 0 \]

3750

\[ {}\left (y^{\prime }\right )^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

3751

\[ {}\left (y^{\prime }\right )^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

3752

\[ {}\left (y^{\prime }\right )^{3}+{\mathrm e}^{-2 y+3 x} \left (y^{\prime }-1\right ) = 0 \]

3753

\[ {}\left (y^{\prime }\right )^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{-2 y+3 x} = 0 \]

3754

\[ {}\left (y^{\prime }\right )^{3}+\left (y^{\prime }\right )^{2}-y = 0 \]

3755

\[ {}\left (y^{\prime }\right )^{3}-\left (y^{\prime }\right )^{2}+y^{2} = 0 \]

3756

\[ {}\left (y^{\prime }\right )^{3}-\left (y^{\prime }\right )^{2}+x y^{\prime }-y = 0 \]

3757

\[ {}\left (y^{\prime }\right )^{3}-a \left (y^{\prime }\right )^{2}+b y+a b x = 0 \]

3758

\[ {}\left (y^{\prime }\right )^{3}+\mathit {a0} \left (y^{\prime }\right )^{2}+\mathit {a1} y^{\prime }+\mathit {a2} +\mathit {a3} y = 0 \]

3759

\[ {}\left (y^{\prime }\right )^{3}+\left (-3 x +1\right ) \left (y^{\prime }\right )^{2}-x \left (-3 x +1\right ) y^{\prime }-1-x^{3} = 0 \]

3760

\[ {}\left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+y^{2} = 0 \]

3761

\[ {}\left (y^{\prime }\right )^{3}+\left (\cos \relax (x ) \cot \relax (x )-y\right ) \left (y^{\prime }\right )^{2}-\left (1+y \cos \relax (x ) \cot \relax (x )\right ) y^{\prime }+y = 0 \]

3762

\[ {}\left (y^{\prime }\right )^{3}+\left (2 x -y^{2}\right ) \left (y^{\prime }\right )^{2}-2 x y^{2} y^{\prime } = 0 \]

3763

\[ {}\left (y^{\prime }\right )^{3}-\left (y^{2}+2 x \right ) \left (y^{\prime }\right )^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

3764

\[ {}\left (y^{\prime }\right )^{3}-\left (y^{2}+x y+x^{2}\right ) \left (y^{\prime }\right )^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

3765

\[ {}\left (y^{\prime }\right )^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) \left (y^{\prime }\right )^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

3766

\[ {}2 \left (y^{\prime }\right )^{3}+x y^{\prime }-2 y = 0 \]

3767

\[ {}2 \left (y^{\prime }\right )^{3}+\left (y^{\prime }\right )^{2}-y = 0 \]

3768

\[ {}3 \left (y^{\prime }\right )^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

3769

\[ {}4 \left (y^{\prime }\right )^{3}+4 y^{\prime } = x \]

3770

\[ {}8 \left (y^{\prime }\right )^{3}+12 \left (y^{\prime }\right )^{2} = 27 x +27 y \]

3771

\[ {}x \left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+a = 0 \]

3772

\[ {}x \left (y^{\prime }\right )^{3}-\left (x +x^{2}+y\right ) \left (y^{\prime }\right )^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

3773

\[ {}x \left (y^{\prime }\right )^{3}-2 y \left (y^{\prime }\right )^{2}+4 x^{2} = 0 \]

3774

\[ {}2 x \left (y^{\prime }\right )^{3}-3 y \left (y^{\prime }\right )^{2}-x = 0 \]

3775

\[ {}4 x \left (y^{\prime }\right )^{3}-6 y \left (y^{\prime }\right )^{2}-x +3 y = 0 \]

3776

\[ {}8 x \left (y^{\prime }\right )^{3}-12 y \left (y^{\prime }\right )^{2}+9 y = 0 \]

3777

\[ {}x^{2} \left (y^{\prime }\right )^{3}-2 x y \left (y^{\prime }\right )^{2}+y^{2} y^{\prime }+1 = 0 \]

3778

\[ {}\left (a^{2}-x^{2}\right ) \left (y^{\prime }\right )^{3}+b x \left (a^{2}-x^{2}\right ) \left (y^{\prime }\right )^{2}-y^{\prime }-b x = 0 \]

3779

\[ {}x \left (y^{\prime }\right )^{3}-3 x^{2} y \left (y^{\prime }\right )^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

3780

\[ {}2 x^{3} \left (y^{\prime }\right )^{3}+6 x^{2} y \left (y^{\prime }\right )^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3} = 0 \]

3781

\[ {}x^{4} \left (y^{\prime }\right )^{3}-x^{3} y \left (y^{\prime }\right )^{2}-x^{2} y^{2} y^{\prime }+x y^{3} = 1 \]

3782

\[ {}x^{6} \left (y^{\prime }\right )^{3}-x y^{\prime }-y = 0 \]

3783

\[ {}y \left (y^{\prime }\right )^{3}-3 x y^{\prime }+3 y = 0 \]

3784

\[ {}2 y \left (y^{\prime }\right )^{3}-3 x y^{\prime }+2 y = 0 \]

3785

\[ {}\left (2 y+x \right ) \left (y^{\prime }\right )^{3}+3 \left (x +y\right ) \left (y^{\prime }\right )^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

3786

\[ {}y^{2} \left (y^{\prime }\right )^{3}-x y^{\prime }+y = 0 \]

3787

\[ {}y^{2} \left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \]

3788

\[ {}4 y^{2} \left (y^{\prime }\right )^{3}-2 x y^{\prime }+y = 0 \]

3789

\[ {}16 y^{2} \left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \]

3790

\[ {}x y^{2} \left (y^{\prime }\right )^{3}-y^{3} \left (y^{\prime }\right )^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

3791

\[ {}y^{3} \left (y^{\prime }\right )^{3}-\left (-3 x +1\right ) y^{2} \left (y^{\prime }\right )^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0 \]

3792

\[ {}y^{4} \left (y^{\prime }\right )^{3}-6 x y^{\prime }+2 y = 0 \]

3793

\[ {}\left (y^{\prime }\right )^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

3794

\[ {}\left (y^{\prime }\right )^{4}+f \relax (x ) \left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

3795

\[ {}\left (y^{\prime }\right )^{4}+f \relax (x ) \left (y-a \right )^{3} \left (y-b \right )^{3} = 0 \]

3796

\[ {}\left (y^{\prime }\right )^{4}+f \relax (x ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2} = 0 \]

3797

\[ {}\left (y^{\prime }\right )^{4}+x y^{\prime }-3 y = 0 \]

3798

\[ {}\left (y^{\prime }\right )^{4}-4 x^{2} y \left (y^{\prime }\right )^{2}+16 x y^{2} y^{\prime }-16 y^{3} = 0 \]

3799

\[ {}\left (y^{\prime }\right )^{4}+4 y \left (y^{\prime }\right )^{3}+6 y^{2} \left (y^{\prime }\right )^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

3800

\[ {}2 \left (y^{\prime }\right )^{4}-y y^{\prime }-2 = 0 \]