# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \theta \left (x -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y = 5 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \relax (t )}{2} \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+y = 0 \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (1+2 x \right ) \left (-y+x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) \left (-2+x \right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (x -1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (2+x \right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime \prime }-2 \cos \relax (x ) y^{\prime }-y \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {1}{4}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {9}{4}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {25}{4}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \] |
✓ |
✗ |
|
\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \relax (x ) \] |
✓ |
✗ |
|
\[ {}y^{\prime }-\frac {y}{x} = \cos \relax (x ) \] | ✓ | ✗ |
|
\[ {}y^{\prime \prime }+y = 0 \] | ✓ | ✓ |
|
\[ {}y^{\prime \prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y = \frac {1}{1-x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✗ |
|
\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+x y^{\prime }-y \,{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+\left (x +1\right ) y = 0 \] |
✓ |
✗ |
|
\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime \prime }-y \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y \sin \relax (x ) = 0 \] |
✓ |
✓ |
|