# |
ODE |
Mathematica result |
Maple result |
\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 y \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (-x^{3}+3\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+x +y}{2 x +2 y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (2+x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) \left (\cos ^{2}\relax (y)\right )-\sin \relax (x ) \sin \left (2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \relax (y)+\left ({\mathrm e}^{2 x}-x^{2} \sin \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} \ln \relax (x )+x^{2}+y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) \cos \relax (y)-2 \sin \relax (x ) \sin \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+4 \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 1+\left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {1}{2 \left (y^{\prime }\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (y) = 0 \] |
✗ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (x ) = y_{1}\relax (x ), y_{2}^{\prime }\relax (x ) = y_{1}\relax (x )+y_{2}\relax (x )] \] |
✓ |
✓ |
|
\[ {}[y_{1}^{\prime }\relax (x ) = y_{2}\relax (x ), y_{2}^{\prime }\relax (x ) = 6 y_{1}\relax (x )+y_{2}\relax (x )] \] | ✓ | ✓ |
|
\[ {}[y_{1}^{\prime }\relax (x ) = y_{1}\relax (x )+y_{2}\relax (x ), y_{2}^{\prime }\relax (x ) = y_{1}\relax (x )+y_{2}\relax (x )+{\mathrm e}^{3 x}] \] | ✓ | ✓ |
|
\[ {}[y_{1}^{\prime }\relax (x ) = 3 y_{1}\relax (x )+x y_{3}\relax (x ), y_{2}^{\prime }\relax (x ) = y_{2}\relax (x )+x^{3} y_{3}\relax (x ), y_{3}^{\prime }\relax (x ) = 2 x y_{2}\relax (x )-y_{2}\relax (x )+{\mathrm e}^{x} y_{3}\relax (x )] \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = k y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y} \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = y+x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x^{4} \left (y^{\prime }\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \] |
✓ |
✓ |
|
\[ {}\left (y \cos \relax (y)-\sin \relax (y)+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \relax (x ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \arcsin \relax (x ) \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sin \relax (x ) \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{5} y^{\prime }+y^{5} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y \ln \relax (y)-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \left (-4 x^{2}+1\right ) \tan \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (y) = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = y-1 \] |
✓ |
✓ |
|
\[ {}x y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x +1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } = 2+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y^{2} \] |
✓ |
✓ |
|