2.61 Problems 6001 to 6100

Table 2.61: Main lookup table

#

ODE

Mathematica result

Maple result

6001

\[ {}[x^{\prime }\relax (t ) = 2 x \relax (t )+4 y \relax (t ), y^{\prime }\relax (t ) = -x \relax (t )+6 y \relax (t )] \]

6002

\[ {}[x^{\prime }\relax (t ) = z \relax (t ), y^{\prime }\relax (t ) = y \relax (t ), z^{\prime }\relax (t ) = x \relax (t )] \]

6003

\[ {}[x^{\prime }\relax (t ) = 6 x \relax (t )-y \relax (t ), y^{\prime }\relax (t ) = 5 x \relax (t )+2 y \relax (t )] \]

6004

\[ {}[x^{\prime }\relax (t ) = x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = -2 x \relax (t )-y \relax (t )] \]

6005

\[ {}[x^{\prime }\relax (t ) = 5 x \relax (t )+y \relax (t ), y^{\prime }\relax (t ) = -2 x \relax (t )+3 y \relax (t )] \]

6006

\[ {}[x^{\prime }\relax (t ) = 4 x \relax (t )+5 y \relax (t ), y^{\prime }\relax (t ) = -2 x \relax (t )+6 y \relax (t )] \]

6007

\[ {}[x^{\prime }\relax (t ) = 4 x \relax (t )-5 y \relax (t ), y^{\prime }\relax (t ) = 5 x \relax (t )-4 y \relax (t )] \]

6008

\[ {}[x^{\prime }\relax (t ) = x \relax (t )-8 y \relax (t ), y^{\prime }\relax (t ) = x \relax (t )-3 y \relax (t )] \]

6009

\[ {}[x^{\prime }\relax (t ) = z \relax (t ), y^{\prime }\relax (t ) = -z \relax (t ), z^{\prime }\relax (t ) = y \relax (t )] \]

6010

\[ {}[x^{\prime }\relax (t ) = 2 x \relax (t )+y \relax (t )+2 z \relax (t ), y^{\prime }\relax (t ) = 3 x \relax (t )+6 z \relax (t ), z^{\prime }\relax (t ) = -4 x \relax (t )-3 z \relax (t )] \]

6011

\[ {}[x^{\prime }\relax (t ) = x \relax (t )-12 y \relax (t )-14 z \relax (t ), y^{\prime }\relax (t ) = x \relax (t )+2 y \relax (t )-3 z \relax (t ), z^{\prime }\relax (t ) = x \relax (t )+y \relax (t )-2 z \relax (t )] \]

6012

\[ {}[x^{\prime }\relax (t ) = 2 x \relax (t )+3 y \relax (t )-7, y^{\prime }\relax (t ) = -x \relax (t )-2 y \relax (t )+5] \]

6013

\[ {}[x^{\prime }\relax (t ) = 5 x \relax (t )+9 y \relax (t )+2, y^{\prime }\relax (t ) = -x \relax (t )+11 y \relax (t )+6] \]

6014

\[ {}x^{2} \left (y^{\prime }\right )^{2}-y^{2} = 0 \]

6015

\[ {}x \left (y^{\prime }\right )^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

6016

\[ {}x^{2} \left (y^{\prime }\right )^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

6017

\[ {}x^{2} \left (y^{\prime }\right )^{2}+x y^{\prime }-y^{2}-y = 0 \]

6018

\[ {}x \left (y^{\prime }\right )^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

6019

\[ {}\left (y^{\prime }\right )^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

6020

\[ {}x \left (y^{\prime }\right )^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

6021

\[ {}\left (y^{\prime }\right )^{2}-x^{2} y^{2} = 0 \]

6022

\[ {}\left (x +y\right )^{2} \left (y^{\prime }\right )^{2} = y^{2} \]

6023

\[ {}y \left (y^{\prime }\right )^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

6024

\[ {}\left (y^{\prime }\right )^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

6025

\[ {}\left (4 x -y\right ) \left (y^{\prime }\right )^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

6026

\[ {}\left (x -y\right )^{2} \left (y^{\prime }\right )^{2} = y^{2} \]

6027

\[ {}x y \left (y^{\prime }\right )^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

6028

\[ {}\left (x^{2}+y^{2}\right )^{2} \left (y^{\prime }\right )^{2} = 4 x^{2} y^{2} \]

6029

\[ {}\left (x +y\right )^{2} \left (y^{\prime }\right )^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (-x +y\right ) = 0 \]

6030

\[ {}x y \left (x^{2}+y^{2}\right ) \left (\left (y^{\prime }\right )^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

6031

\[ {}x \left (y^{\prime }\right )^{3}-\left (x^{2}+x +y\right ) \left (y^{\prime }\right )^{2}+\left (x^{2}+x y+y\right ) y^{\prime }-x y = 0 \]

6032

\[ {}x y \left (y^{\prime }\right )^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

6033

\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }+4 x = 0 \]

6034

\[ {}3 x^{4} \left (y^{\prime }\right )^{2}-x y^{\prime }-y = 0 \]

6035

\[ {}\left (y^{\prime }\right )^{2}-x y^{\prime }-y = 0 \]

6036

\[ {}\left (y^{\prime }\right )^{2}-x y^{\prime }+y = 0 \]

6037

\[ {}\left (y^{\prime }\right )^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6038

\[ {}4 y^{3} \left (y^{\prime }\right )^{2}-4 x y^{\prime }+y = 0 \]

6039

\[ {}4 y^{3} \left (y^{\prime }\right )^{2}+4 x y^{\prime }+y = 0 \]

6040

\[ {}\left (y^{\prime }\right )^{3}+x \left (y^{\prime }\right )^{2}-y = 0 \]

6041

\[ {}y^{4} \left (y^{\prime }\right )^{3}-6 x y^{\prime }+2 y = 0 \]

6042

\[ {}\left (y^{\prime }\right )^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

6043

\[ {}\left (y^{\prime }\right )^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6044

\[ {}2 x \left (y^{\prime }\right )^{3}-6 y \left (y^{\prime }\right )^{2}+x^{4} = 0 \]

6045

\[ {}\left (y^{\prime }\right )^{2}-x y^{\prime }+y = 0 \]

6046

\[ {}y = x y^{\prime }+k \left (y^{\prime }\right )^{2} \]

6047

\[ {}x^{8} \left (y^{\prime }\right )^{2}+3 x y^{\prime }+9 y = 0 \]

6048

\[ {}x^{4} \left (y^{\prime }\right )^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

6049

\[ {}x \left (y^{\prime }\right )^{2}-2 y y^{\prime }+4 x = 0 \]

6050

\[ {}3 x^{4} \left (y^{\prime }\right )^{2}-x y^{\prime }-y = 0 \]

6051

\[ {}x \left (y^{\prime }\right )^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

6052

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

6053

\[ {}x^{6} \left (y^{\prime }\right )^{3}-3 x y^{\prime }-3 y = 0 \]

6054

\[ {}y = x^{6} \left (y^{\prime }\right )^{3}-x y^{\prime } \]

6055

\[ {}x \left (y^{\prime }\right )^{4}-2 y \left (y^{\prime }\right )^{3}+12 x^{3} = 0 \]

6056

\[ {}x \left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+1 = 0 \]

6057

\[ {}\left (y^{\prime }\right )^{2}-x y^{\prime }-y = 0 \]

6058

\[ {}2 \left (y^{\prime }\right )^{3}+x y^{\prime }-2 y = 0 \]

6059

\[ {}2 \left (y^{\prime }\right )^{2}+x y^{\prime }-2 y = 0 \]

6060

\[ {}\left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \]

6061

\[ {}4 x \left (y^{\prime }\right )^{2}-3 y y^{\prime }+3 = 0 \]

6062

\[ {}\left (y^{\prime }\right )^{3}-x y^{\prime }+2 y = 0 \]

6063

\[ {}5 \left (y^{\prime }\right )^{2}+6 x y^{\prime }-2 y = 0 \]

6064

\[ {}2 x \left (y^{\prime }\right )^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

6065

\[ {}5 \left (y^{\prime }\right )^{2}+3 x y^{\prime }-y = 0 \]

6066

\[ {}\left (y^{\prime }\right )^{2}+3 x y^{\prime }-y = 0 \]

6067

\[ {}y = x y^{\prime }+x^{3} \left (y^{\prime }\right )^{2} \]

6068

\[ {}y^{\prime \prime } = x \left (y^{\prime }\right )^{3} \]

6069

\[ {}x^{2} y^{\prime \prime }+\left (y^{\prime }\right )^{2}-2 x y^{\prime } = 0 \]

6070

\[ {}x^{2} y^{\prime \prime }+\left (y^{\prime }\right )^{2}-2 x y^{\prime } = 0 \]

6071

\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \]

6072

\[ {}y^{2} y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \]

6073

\[ {}\left (y+1\right ) y^{\prime \prime } = \left (y^{\prime }\right )^{2} \]

6074

\[ {}2 a y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \]

6075

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

6076

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

6077

\[ {}y^{\prime \prime } = 2 y \left (y^{\prime }\right )^{3} \]

6078

\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{3}-\left (y^{\prime }\right )^{2} = 0 \]

6079

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

6080

\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \]

6081

\[ {}\cos \relax (x ) y^{\prime \prime } = y^{\prime } \]

6082

\[ {}y^{\prime \prime } = x \left (y^{\prime }\right )^{2} \]

6083

\[ {}y^{\prime \prime } = x \left (y^{\prime }\right )^{2} \]

6084

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6085

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6086

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6087

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6088

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

6089

\[ {}y^{\prime \prime } = \left (y^{\prime }\right )^{2} \]

6090

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \left (y^{\prime }\right )^{2} \]

6091

\[ {}2 y^{\prime \prime } = \left (y^{\prime }\right )^{3} \sin \left (2 x \right ) \]

6092

\[ {}x^{2} y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \]

6093

\[ {}y^{\prime \prime } = 1+\left (y^{\prime }\right )^{2} \]

6094

\[ {}y^{\prime \prime } = \left (1+\left (y^{\prime }\right )^{2}\right )^{\frac {3}{2}} \]

6095

\[ {}y y^{\prime \prime } = \left (y^{\prime }\right )^{2} \left (1-y^{\prime } \sin \relax (y)-y y^{\prime } \cos \relax (y)\right ) \]

6096

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+\left (y^{\prime }\right )^{3}+y^{\prime } = 0 \]

6097

\[ {}\left (y y^{\prime \prime }+1+\left (y^{\prime }\right )^{2}\right )^{2} = \left (1+\left (y^{\prime }\right )^{2}\right )^{3} \]

6098

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6099

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6100

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]