# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (y-2 x y^{\prime }\right )^{2} = \left (y^{\prime }\right )^{3} \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \relax (x ) \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime \prime }+2 x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (-x +2\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (1-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \relax (x ) \] |
✓ |
✓ | |
\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\relax (t ) = x \relax (t )+2 y \relax (t )+2 t +1, y^{\prime }\relax (t ) = 5 x \relax (t )+y \relax (t )+3 t -1] \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \left (\sin ^{2}\left (2 x \right )\right )+y^{\prime } \sin \left (4 x \right )-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 \cot \relax (x ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime }+y = \frac {1}{x^{2}} \] |
✓ |
✗ |
|
\[ {}x y^{\prime }+y = 0 \] |
✓ | ✓ |
|
\[ {}y^{\prime } = \frac {1}{x} \] | ✓ | ✗ |
|
\[ {}y^{\prime \prime } = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
\[ {}h^{2}+\frac {2 a h}{\sqrt {1+\left (h^{\prime }\right )^{2}}} = b^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (2+x \right ) {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \relax (x )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2 y \ln \relax (y)+y-x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (1+2 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = b y \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \] |
✓ |
✓ |
|
\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \] |
✓ |
✓ |
|
\[ {}a \sin \relax (x ) y x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}f \relax (x ) \sin \relax (x ) y x y^{\prime } \pi = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x )+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x )+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x )+\frac {y^{2}}{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x +y+b y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\pi y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}f \relax (x ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 1 \] |
✓ |
✓ |
|