2.67 Problems 6601 to 6700

Table 2.67: Main lookup table

#

ODE

Mathematica result

Maple result

6601

\[ {}x y^{\prime } = \sin \relax (x ) \]

6602

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

6603

\[ {}y y^{\prime } = 0 \]

6604

\[ {}x y y^{\prime } = 0 \]

6605

\[ {}x y \sin \relax (x ) y^{\prime } = 0 \]

6606

\[ {}\pi y \sin \relax (x ) y^{\prime } = 0 \]

6607

\[ {}x \sin \relax (x ) y^{\prime } = 0 \]

6608

\[ {}x \sin \relax (x ) \left (y^{\prime }\right )^{2} = 0 \]

6609

\[ {}y \left (y^{\prime }\right )^{2} = 0 \]

6610

\[ {}\left (y^{\prime }\right )^{n} = 0 \]

6611

\[ {}x \left (y^{\prime }\right )^{n} = 0 \]

6612

\[ {}\left (y^{\prime }\right )^{2} = x \]

6613

\[ {}\left (y^{\prime }\right )^{2} = x +y \]

6614

\[ {}\left (y^{\prime }\right )^{2} = \frac {y}{x} \]

6615

\[ {}\left (y^{\prime }\right )^{2} = \frac {y^{2}}{x} \]

6616

\[ {}\left (y^{\prime }\right )^{2} = \frac {y^{3}}{x} \]

6617

\[ {}\left (y^{\prime }\right )^{3} = \frac {y^{2}}{x} \]

6618

\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x y} \]

6619

\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x y^{3}} \]

6620

\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x^{2} y^{3}} \]

6621

\[ {}\left (y^{\prime }\right )^{4} = \frac {1}{x y^{3}} \]

6622

\[ {}\left (y^{\prime }\right )^{2} = \frac {1}{x^{3} y^{4}} \]

6623

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

6624

\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{3}} \]

6625

\[ {}y^{\prime } = \left (1+6 x +y\right )^{\frac {1}{4}} \]

6626

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

6627

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{\frac {7}{2}} \]

6628

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

6629

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

6630

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

6631

\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

6632

\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \relax (x ) \]

6633

\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \relax (x ) \]

6634

\[ {}y^{\prime \prime } = 0 \]

6635

\[ {}\left (y^{\prime \prime }\right )^{2} = 0 \]

6636

\[ {}\left (y^{\prime \prime }\right )^{n} = 0 \]

6637

\[ {}a y^{\prime \prime } = 0 \]

6638

\[ {}a \left (y^{\prime \prime }\right )^{2} = 0 \]

6639

\[ {}a \left (y^{\prime \prime }\right )^{n} = 0 \]

6640

\[ {}y^{\prime \prime } = 1 \]

6641

\[ {}\left (y^{\prime \prime }\right )^{2} = 1 \]

6642

\[ {}y^{\prime \prime } = x \]

6643

\[ {}\left (y^{\prime \prime }\right )^{2} = x \]

6644

\[ {}\left (y^{\prime \prime }\right )^{3} = 0 \]

6645

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

6646

\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \]

6647

\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 0 \]

6648

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

6649

\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = 1 \]

6650

\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = 1 \]

6651

\[ {}y^{\prime \prime }+y^{\prime } = x \]

6652

\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime } = x \]

6653

\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2} = x \]

6654

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6655

\[ {}\left (y^{\prime \prime }\right )^{2}+y^{\prime }+y = 0 \]

6656

\[ {}y^{\prime \prime }+\left (y^{\prime }\right )^{2}+y = 0 \]

6657

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

6658

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

6659

\[ {}y^{\prime \prime }+y^{\prime }+y = x +1 \]

6660

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

6661

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

6662

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \relax (x ) \]

6663

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \relax (x ) \]

6664

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

6665

\[ {}y^{\prime \prime }+y^{\prime } = x \]

6666

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

6667

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

6668

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

6669

\[ {}y^{\prime \prime }+y^{\prime } = \sin \relax (x ) \]

6670

\[ {}y^{\prime \prime }+y^{\prime } = \cos \relax (x ) \]

6671

\[ {}y^{\prime \prime }+y = 1 \]

6672

\[ {}y^{\prime \prime }+y = x \]

6673

\[ {}y^{\prime \prime }+y = x +1 \]

6674

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

6675

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

6676

\[ {}y^{\prime \prime }+y = \sin \relax (x ) \]

6677

\[ {}y^{\prime \prime }+y = \cos \relax (x ) \]

6678

\[ {}y \left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \]

6679

\[ {}y \left (y^{\prime \prime }\right )^{2}+\left (y^{\prime }\right )^{3} = 0 \]

6680

\[ {}y^{2} \left (y^{\prime \prime }\right )^{2}+y^{\prime } = 0 \]

6681

\[ {}y \left (y^{\prime \prime }\right )^{4}+\left (y^{\prime }\right )^{2} = 0 \]

6682

\[ {}y^{3} \left (y^{\prime \prime }\right )^{2}+y y^{\prime } = 0 \]

6683

\[ {}y y^{\prime \prime }+\left (y^{\prime }\right )^{3} = 0 \]

6684

\[ {}y \left (y^{\prime \prime }\right )^{3}+y^{3} y^{\prime } = 0 \]

6685

\[ {}y \left (y^{\prime \prime }\right )^{3}+y^{3} \left (y^{\prime }\right )^{5} = 0 \]

6686

\[ {}y^{\prime \prime }+x y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \]

6687

\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \]

6688

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} \left (y^{\prime }\right )^{2} = 0 \]

6689

\[ {}y^{\prime \prime }+\left (\sin \relax (x )+2 x \right ) y^{\prime }+\cos \relax (y) y \left (y^{\prime }\right )^{2} = 0 \]

6690

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

6691

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

6692

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

6693

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) \left (y^{\prime }\right )^{2} = 0 \]

6694

\[ {}y^{\prime \prime }+x y^{\prime }+y \left (y^{\prime }\right )^{2} = 0 \]

6695

\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+\left (y^{\prime }\right )^{2} = 0 \]

6696

\[ {}3 y^{\prime \prime }+\cos \relax (x ) y^{\prime }+\sin \relax (y) \left (y^{\prime }\right )^{2} = 0 \]

6697

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 \left (y^{\prime }\right )^{2}}{y} = 0 \]

6698

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} \left (y^{\prime }\right )^{2}}{\sin \relax (y)} = 0 \]

6699

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

6700

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]