# |
ODE |
Mathematica result |
Maple result |
\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \] |
✓ |
✓ |
|
\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+2 u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \] |
✓ |
✓ | |
\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \relax (t ) \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+3\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+\cos \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x^{2} y^{\prime }+\sin \relax (x ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \] | ✓ | ✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{10}+\frac {3 x_{2}\relax (t )}{40}, x_{2}^{\prime }\relax (t ) = \frac {x_{1}\relax (t )}{10}-\frac {x_{2}\relax (t )}{5}\right ] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-\frac {5 x_{2}\relax (t )}{2}, x_{2}^{\prime }\relax (t ) = \frac {9 x_{1}\relax (t )}{5}-x_{2}\relax (t )\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = \frac {3 x_{1}\relax (t )}{4}-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-\frac {5 x_{2}\relax (t )}{4}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {4 x_{1}\relax (t )}{5}+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+\frac {6 x_{2}\relax (t )}{5}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{4}+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-\frac {x_{2}\relax (t )}{4}, x_{3}^{\prime }\relax (t ) = -\frac {x_{3}\relax (t )}{4}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{4}+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-\frac {x_{2}\relax (t )}{4}, x_{3}^{\prime }\relax (t ) = \frac {x_{3}\relax (t )}{10}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{2}-\frac {x_{2}\relax (t )}{8}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-\frac {x_{2}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 8 x_{1}\relax (t )-4 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {3 x_{1}\relax (t )}{2}+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{4}-\frac {x_{2}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+\frac {5 x_{2}\relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {5 x_{1}\relax (t )}{2}+2 x_{2}\relax (t )\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-7 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1}\relax (t )}{2}+\frac {3 x_{2}\relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {3 x_{1}\relax (t )}{2}+\frac {x_{2}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+\frac {3 x_{2}\relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {3 x_{1}\relax (t )}{2}-x_{2}\relax (t )\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+9 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1}\relax (t )+x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+6 x_{2}\relax (t )+2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1}\relax (t )}{2}+x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-\frac {5 x_{2}\relax (t )}{2}+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )-\frac {5 x_{3}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t )+t] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+\sqrt {3}\, x_{2}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = \sqrt {3}\, x_{1}\relax (t )-x_{2}\relax (t )+\sqrt {3}\, {\mathrm e}^{-t}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t )-\cos \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+\sin \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+{\mathrm e}^{-2 t}, x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t )-2 \,{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t )+\frac {1}{t^{3}}, x_{2}^{\prime }\relax (t ) = 8 x_{1}\relax (t )-4 x_{2}\relax (t )-\frac {1}{t^{2}}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -4 x_{1}\relax (t )+2 x_{2}\relax (t )+\frac {1}{t}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )+\frac {2}{t}+4\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+2 \,{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )-{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t )-{\mathrm e}^{t}] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1}\relax (t )}{4}+\frac {3 x_{2}\relax (t )}{4}+2 t, x_{2}^{\prime }\relax (t ) = \frac {3 x_{1}\relax (t )}{4}-\frac {5 x_{2}\relax (t )}{4}+{\mathrm e}^{t}\right ] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+\sqrt {2}\, x_{2}\relax (t )+{\mathrm e}^{-t}, x_{2}^{\prime }\relax (t ) = \sqrt {2}\, x_{1}\relax (t )-2 x_{2}\relax (t )-{\mathrm e}^{-t}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+\cos \relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t )+\csc \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+\sec \relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1}\relax (t )}{2}-\frac {x_{2}\relax (t )}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2}, x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-\frac {x_{2}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+3 t] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-7 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}\left [x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -\frac {5 x_{2}\relax (t )}{2}\right ] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|