2.129 Problems 12801 to 12900

Table 2.257: Main lookup table

#

ODE

Mathematica result

Maple result

12801

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right )] \]

12802

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

12803

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

12804

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

12805

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

12806

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

12807

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

12808

\[ {}\left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{10}, y^{\prime }\left (t \right ) = \frac {z \left (t \right )}{5}, z^{\prime }\left (t \right ) = \frac {2 x \left (t \right )}{5}\right ] \]

12809

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right ), z^{\prime }\left (t \right ) = 2 z \left (t \right )] \]

12810

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

12811

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+z \left (t \right )] \]

12812

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+2 z \left (t \right )] \]

12813

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

12814

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

12815

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

12816

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

12817

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

12818

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

12819

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )-z \left (t \right )] \]

12820

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 5 x \left (t \right )-5 y \left (t \right )] \]

12821

\[ {}\left [x^{\prime }\left (t \right ) = -10 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = 28 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = -\frac {8 z \left (t \right )}{3}\right ] \]

12822

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

12825

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

12827

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12828

\[ {}\left [x^{\prime }\left (t \right ) = \pi ^{2} x \left (t \right )+\frac {187 y \left (t \right )}{5}, y^{\prime }\left (t \right ) = \sqrt {555}\, x \left (t \right )+\frac {400617 y \left (t \right )}{5000}\right ] \]

12829

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

12830

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

12831

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

12832

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

12833

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12834

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

12835

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )-4 y \left (t \right )] \]

12836

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

12837

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

12838

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

12839

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12840

\[ {}y^{\prime \prime }+2 y = 0 \]

12841

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

12842

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

12843

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

12844

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

12845

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

12846

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

12847

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

12848

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

12849

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]

12850

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]

12851

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

12852

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

12853

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]

12854

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]

12855

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]

12856

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]

12857

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]

12858

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]

12859

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

12860

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]

12861

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]

12862

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]

12863

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]

12864

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]

12865

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]

12866

\[ {}y^{\prime \prime }+2 y = -3 \]

12867

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]

12868

\[ {}y^{\prime \prime }+9 y = 6 \]

12869

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]

12870

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]

12871

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]

12872

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]

12873

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]

12874

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]

12875

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]

12876

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]

12877

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]

12878

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]

12879

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]

12880

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]

12881

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

12882

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

12883

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

12884

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

12885

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

12886

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

12887

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

12888

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

12889

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

12890

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

12891

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

12892

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]

12893

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

12894

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]

12895

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

12896

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

12897

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

12898

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

12899

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

12900

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]