2.130 Problems 12901 to 13000

Table 2.259: Main lookup table

#

ODE

Mathematica result

Maple result

12901

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

12902

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

12903

\[ {}y^{\prime \prime }+4 y = 8 \]

12904

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]

12905

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]

12906

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]

12907

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]

12908

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]

12909

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]

12910

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

12911

\[ {}y^{\prime \prime }+3 y = 5 \left (\delta \left (t -2\right )\right ) \]

12912

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (-3+t \right ) \]

12913

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \left (\delta \left (t -2\right )\right ) \]

12914

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \left (\delta \left (t -4\right )\right ) \]

12915

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]

12916

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]

12917

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]

12918

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]

12919

\[ {}y^{\prime \prime }+16 y = 0 \]

12920

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

12921

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12922

\[ {}y^{\prime \prime }+16 y = t \]

12923

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

12924

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

12925

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

12926

\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \]

12927

\[ {}y^{\prime } y = 2 x \]

12928

\[ {}y^{\prime \prime } = \frac {1+x}{x -1} \]

12929

\[ {}x^{2} y^{\prime \prime } = 1 \]

12930

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]

12931

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

12932

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]

12933

\[ {}y^{\prime } = 4 x^{3} \]

12934

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

12935

\[ {}x y^{\prime }+\sqrt {x} = 2 \]

12936

\[ {}\sqrt {x +4}\, y^{\prime } = 1 \]

12937

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

12938

\[ {}y^{\prime } = x \cos \left (x \right ) \]

12939

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

12940

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

12941

\[ {}1 = x^{2}-9 y^{\prime } \]

12942

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

12943

\[ {}y^{\prime \prime }-3 = x \]

12944

\[ {}y^{\prime \prime \prime \prime } = 1 \]

12945

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]

12946

\[ {}\left (x +6\right )^{\frac {1}{3}} y^{\prime } = 1 \]

12947

\[ {}y^{\prime } = \frac {x -1}{1+x} \]

12948

\[ {}x y^{\prime }+2 = \sqrt {x} \]

12949

\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \]

12950

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

12951

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]

12952

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

12953

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

12954

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

12955

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

12956

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

12957

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

12958

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

12959

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

12960

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]

12961

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]

12962

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]

12963

\[ {}x y^{\prime } = \sin \left (x \right ) \]

12964

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]

12965

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]

12966

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]

12967

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]

12968

\[ {}y^{\prime }+3 x y = 6 x \]

12969

\[ {}\sin \left (x +y\right )-y^{\prime } y = 0 \]

12970

\[ {}y^{\prime }-y^{3} = 8 \]

12971

\[ {}x^{2} y^{\prime }+y^{2} x = x \]

12972

\[ {}y^{\prime }-y^{2} = x \]

12973

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

12974

\[ {}\left (-2+x \right ) y^{\prime } = 3+y \]

12975

\[ {}\left (y-2\right ) y^{\prime } = -3+x \]

12976

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

12977

\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

12978

\[ {}y^{\prime } = 2 \sqrt {y} \]

12979

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

12980

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

12981

\[ {}x y^{\prime } = \left (-y+x \right )^{2} \]

12982

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

12983

\[ {}y^{\prime }+4 y = 8 \]

12984

\[ {}y^{\prime }+x y = 4 x \]

12985

\[ {}y^{\prime }+4 y = x^{2} \]

12986

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

12987

\[ {}y^{\prime } = \sin \left (x +y\right ) \]

12988

\[ {}y^{\prime } y = {\mathrm e}^{x -3 y^{2}} \]

12989

\[ {}y^{\prime } = \frac {x}{y} \]

12990

\[ {}y^{\prime } = y^{2}+9 \]

12991

\[ {}x y y^{\prime } = y^{2}+9 \]

12992

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

12993

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

12994

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

12995

\[ {}y^{\prime } = \frac {x}{y} \]

12996

\[ {}y^{\prime } = 2 x -1+2 x y-y \]

12997

\[ {}y^{\prime } y = y^{2} x +x \]

12998

\[ {}y^{\prime } y = 3 \sqrt {y^{2} x +9 x} \]

12999

\[ {}y^{\prime } = x y-4 x \]

13000

\[ {}y^{\prime }-4 y = 2 \]