# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 8 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y = 5 \left (\delta \left (t -2\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (-3+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \left (\delta \left (t -2\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (t -1\right )-3 \left (\delta \left (t -4\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3-\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3-\sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \arcsin \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {1+x}{x -1} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\sqrt {x} = 2 \] |
✓ |
✓ |
|
\[ {}\sqrt {x +4}\, y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x = \left (x^{2}-9\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}1 = x^{2}-9 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 = x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}\left (x +6\right )^{\frac {1}{3}} y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -1}{1+x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \sqrt {x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \sqrt {x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \sqrt {x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \sqrt {x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 x y = 6 x \] |
✓ |
✓ |
|
\[ {}\sin \left (x +y\right )-y^{\prime } y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-y^{3} = 8 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} x = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2} = x \] |
✓ |
✓ |
|
\[ {}y^{3}-25 y+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime } = 3+y \] |
✓ |
✓ |
|
\[ {}\left (y-2\right ) y^{\prime } = -3+x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y-y^{2} = -2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \left (-y+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = 8 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-3 x -2 y+6 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = {\mathrm e}^{x -3 y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+9 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = y^{2}+9 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x -1+2 x y-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = y^{2} x +x \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = 3 \sqrt {y^{2} x +9 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y-4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = 2 \] |
✓ |
✓ |
|
|
|||
|
|||