2.134 Problems 13301 to 13400

Table 2.267: Main lookup table

#

ODE

Mathematica result

Maple result

13301

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

13302

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

13303

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

13304

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13305

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

13306

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

13307

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13308

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

13309

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13310

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

13311

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

13312

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

13313

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

13314

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

13315

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

13316

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

13317

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

13318

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

13319

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

13320

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

13321

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

13322

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

13323

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

13324

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

13325

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

13326

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13327

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

13328

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

13329

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13330

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

13331

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

13332

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

13333

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

13334

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13335

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13336

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

13337

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

13338

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

13339

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

13340

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

13341

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13342

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13343

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

13344

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13345

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

13346

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13347

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13348

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13349

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

13350

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

13351

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

13352

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

13353

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13354

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13355

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13356

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]

13357

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13358

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

13359

\[ {}y^{\prime \prime }-9 y = 36 \]

13360

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

13361

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

13362

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

13363

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

13364

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

13365

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

13366

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

13367

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

13368

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

13369

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

13370

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

13371

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

13372

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

13373

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

13374

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

13375

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

13376

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

13377

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

13378

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

13379

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

13380

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]

13381

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

13382

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

13383

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

13384

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

13385

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]

13386

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

13387

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

13388

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

13389

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

13390

\[ {}y^{\prime \prime }+9 y = x^{3} \]

13391

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

13392

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

13393

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

13394

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

13395

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

13396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

13397

\[ {}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]

13398

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

13399

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

13400

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]