2.133 Problems 13201 to 13300

Table 2.265: Main lookup table

#

ODE

Mathematica result

Maple result

13201

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

13202

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

13203

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

13204

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

13205

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

13206

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

13207

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

13208

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

13209

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

13210

\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \]

13211

\[ {}y^{\prime \prime \prime }+y = 0 \]

13212

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

13213

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

13214

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

13215

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

13216

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13217

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13218

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

13219

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13220

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13221

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

13222

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

13223

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

13224

\[ {}y^{\prime \prime }+y = 0 \]

13225

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

13226

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

13227

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13228

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13229

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13230

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

13231

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

13232

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

13233

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

13234

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

13235

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

13236

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

13237

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

13238

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

13239

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

13240

\[ {}y^{\prime \prime }+4 y = 0 \]

13241

\[ {}y^{\prime \prime }-4 y = 0 \]

13242

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13243

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13244

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13245

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

13246

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13247

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13248

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

13249

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13250

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

13251

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13252

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

13253

\[ {}y^{\prime \prime }-4 y = 0 \]

13254

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

13255

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

13256

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

13257

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

13258

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

13259

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

13260

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

13261

\[ {}y^{\prime \prime }-25 y = 0 \]

13262

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

13263

\[ {}4 y^{\prime \prime }-y = 0 \]

13264

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

13265

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13266

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13267

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13268

\[ {}y^{\prime \prime }-9 y = 0 \]

13269

\[ {}y^{\prime \prime }-9 y = 0 \]

13270

\[ {}y^{\prime \prime }-9 y = 0 \]

13271

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13272

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13273

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

13274

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

13275

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

13276

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

13277

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13278

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13279

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13280

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13281

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13282

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13283

\[ {}y^{\prime \prime }+25 y = 0 \]

13284

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13286

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13287

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

13288

\[ {}4 y^{\prime \prime }+y = 0 \]

13289

\[ {}y^{\prime \prime }+16 y = 0 \]

13290

\[ {}y^{\prime \prime }+16 y = 0 \]

13291

\[ {}y^{\prime \prime }+16 y = 0 \]

13292

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13293

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13294

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13295

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13296

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13297

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

13298

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

13299

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

13300

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]