2.136 Problems 13501 to 13600

Table 2.271: Main lookup table

#

ODE

Mathematica result

Maple result

13501

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

13502

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

13503

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13504

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

13505

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

13506

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

13507

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

13508

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

13509

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

13510

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

13511

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

13512

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

13513

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

13514

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

13515

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

13516

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

13517

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

13518

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

13519

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

13520

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

13521

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

13522

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

13523

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

13524

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

13525

\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

13526

\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

13527

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

13528

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

13529

\[ {}y^{\prime }+4 y = 0 \]

13530

\[ {}y^{\prime }-2 y = t^{3} \]

13531

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]

13532

\[ {}y^{\prime \prime }-4 y = t^{3} \]

13533

\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \]

13534

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

13535

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \]

13536

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \]

13537

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \]

13538

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \]

13539

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

13540

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \]

13541

\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

13542

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]

13543

\[ {}y^{\prime \prime }-9 y = 0 \]

13544

\[ {}y^{\prime \prime }+9 y = 27 t^{3} \]

13545

\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \]

13546

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

13547

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \]

13548

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

13549

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

13550

\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \]

13551

\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \]

13552

\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \]

13553

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \]

13554

\[ {}y^{\prime \prime }+4 y = 1 \]

13555

\[ {}y^{\prime \prime }+4 y = t \]

13556

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \]

13557

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]

13558

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \]

13559

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]

13560

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

13561

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]

13562

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]

13563

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]

13564

\[ {}y^{\prime } = \operatorname {Heaviside}\left (-3+t \right ) \]

13565

\[ {}y^{\prime } = \operatorname {Heaviside}\left (-3+t \right ) \]

13566

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

13567

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

13568

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]

13569

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

13570

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

13571

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

13572

\[ {}y^{\prime } = 3 \left (\delta \left (t -2\right )\right ) \]

13573

\[ {}y^{\prime } = \delta \left (t -2\right )-\left (\delta \left (t -4\right )\right ) \]

13574

\[ {}y^{\prime \prime } = \delta \left (-3+t \right ) \]

13575

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\left (\delta \left (t -4\right )\right ) \]

13576

\[ {}y^{\prime }+2 y = 4 \left (\delta \left (t -1\right )\right ) \]

13577

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (-\pi +t \right ) \]

13578

\[ {}y^{\prime \prime }+y = -2 \left (\delta \left (t -\frac {\pi }{2}\right )\right ) \]

13579

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]

13580

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

13581

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]

13582

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

13583

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

13584

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]

13585

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

13586

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (-3+t \right ) \]

13587

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

13588

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

13589

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

13590

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

13591

\[ {}y^{\prime }-2 y = 0 \]

13592

\[ {}y^{\prime }-2 x y = 0 \]

13593

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

13594

\[ {}\left (-3+x \right ) y^{\prime }-2 y = 0 \]

13595

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

13596

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

13597

\[ {}y^{\prime }+\frac {y}{x -1} = 0 \]

13598

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

13599

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

13600

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]