# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 3 y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 20 \,{\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = t^{2} {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 7 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \] |
✗ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 27 t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+7 y = 165 \,{\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+40 y = 122 \,{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 24 \,{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = {\mathrm e}^{2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \operatorname {Heaviside}\left (-3+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \operatorname {Heaviside}\left (-3+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \left (\delta \left (t -2\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \delta \left (t -2\right )-\left (\delta \left (t -4\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \delta \left (-3+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\left (\delta \left (t -4\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 4 \left (\delta \left (t -1\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (-\pi +t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = -2 \left (\delta \left (t -\frac {\pi }{2}\right )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (-3+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-3+x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x -1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x -1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||