2.137 Problems 13601 to 13700

Table 2.273: Main lookup table

#

ODE

Mathematica result

Maple result

13601

\[ {}\left (1+x \right ) y^{\prime }-x y = 0 \]

13602

\[ {}\left (1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

13603

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

13604

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

13605

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

13606

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

13607

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

13608

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

13609

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

13610

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (-3+x \right ) y^{\prime }+2 y = 0 \]

13611

\[ {}y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \]

13612

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

13613

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

13614

\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

13615

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

13616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

13617

\[ {}y^{\prime \prime }+4 y = 0 \]

13618

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

13619

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

13620

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

13621

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

13622

\[ {}y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-x y = 0 \]

13623

\[ {}y^{\prime \prime }-y^{2} = 0 \]

13624

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

13625

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13626

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

13627

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13628

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13629

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

13630

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

13631

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

13632

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

13633

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

13634

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

13635

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13636

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

13637

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

13638

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

13639

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

13640

\[ {}y^{\prime \prime }+3 x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13641

\[ {}x y^{\prime \prime }-3 x y^{\prime }+\sin \left (x \right ) y = 0 \]

13642

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

13643

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

13644

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

13645

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

13646

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

13647

\[ {}\cos \left (x \right ) y^{\prime }+y = 0 \]

13648

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

13649

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

13650

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

13651

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

13652

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

13653

\[ {}\left (-3+x \right )^{2} y^{\prime \prime }-2 \left (-3+x \right ) y^{\prime }+2 y = 0 \]

13654

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13655

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

13656

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime } = 0 \]

13657

\[ {}3 \left (-2+x \right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

13658

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

13659

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{-2+x}+\frac {2 y}{2+x} = 0 \]

13660

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

13661

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

13662

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{-3+x}+\frac {y}{x -4} = 0 \]

13663

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (-3+x \right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

13664

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

13665

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

13666

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

13667

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13668

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

13669

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

13670

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

13671

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

13672

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

13673

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

13674

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

13675

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

13676

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

13677

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

13678

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

13679

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

13680

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

13681

\[ {}\left (-3+x \right ) y^{\prime \prime }+\left (-3+x \right ) y^{\prime }+y = 0 \]

13682

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y = 0 \]

13683

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

13684

\[ {}\left (-3+x \right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

13685

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

13686

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

13687

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

13688

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13689

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

13690

\[ {}x^{2} \left (1+2 x \right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

13691

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

13692

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+2 x \right ) y = 0 \]

13693

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

13694

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

13695

\[ {}\left (-3+x \right ) y^{\prime \prime }+\left (-3+x \right ) y^{\prime }+y = 0 \]

13696

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

13697

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

13698

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

13699

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

13700

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]