# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-\frac {y^{2}}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \] |
✓ |
✓ |
|
\[ {}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {y^{\prime \prime }}{y}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = x^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \] |
✓ |
✓ |
|
\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \] |
✓ |
✓ |
|
\[ {}z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \] |
✓ |
✓ |
|
\[ {}\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \] |
✓ |
✗ |
|
\[ {}z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y-\left (-2+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \] |
✓ |
✓ |
|
\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\cos \left (-y+x \right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \] |
✓ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 2 x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \] |
✓ |
✓ |
|
\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \] |
✓ |
✓ |
|
\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}\sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) = x \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y = \sqrt {9 x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}-y^{2}\right )-x \left (y^{2}+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = \sqrt {y^{2}+x^{2}}-x \] |
✓ |
✓ |
|
\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||