# |
ODE |
Mathematica result |
Maple result |
\[ {}2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-2 x y = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-x y^{\prime }+y = x^{3} \] |
✓ |
✓ |
|
\[ {}\left (-2 x +1\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = x^{2}-x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +12\right ) y = x^{2}+x \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \] |
✓ |
✓ |
|
\[ {}3 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = x^{4}+x^{2} \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+10 x y^{\prime }+y = x -1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 6 \left (-x^{2}+1\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+2 y = x^{2} \left (2+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = x \left (x^{2}+x +1\right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-x y^{\prime }+\left (1-x \right ) y = x^{2} \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \arcsin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{t^{2}+4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y+t \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right )^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \tan \left (t \right )+\sec \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{t +1} \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = -y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} x = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+3 x +y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y^{3}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \] |
✓ |
✓ |
|
\[ {}\left (y-x \right ) y^{\prime }+2 x +3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x +2 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \] |
✓ |
✓ |
|
|
|||
|
|||