# |
ODE |
Mathematica result |
Maple result |
\[ {}x^{3} y^{\prime } = x^{4}+y^{2} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = x^{2} \left (y-1\right )+y^{2} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = \left (1+x \right ) y^{2} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime }+3+\left (3-2 x \right ) x^{2} y-x^{6} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = \cos \left (y\right ) \left (\cos \left (y\right )-2 x^{2} \sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = x^{2} a +y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{2} a +y \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{2}+1\right ) y^{\prime }+x^{2}+\left (-x^{2}+1\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}6 x^{3} y^{\prime } = 4 x^{2} y+\left (1-3 x \right ) y^{4} \] |
✓ |
✓ |
|
\[ {}x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y = y^{2} \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime }+y x^{3}+\csc \left (x y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{3}+1\right ) y^{\prime } = x^{2}+\left (1-2 x y\right ) y \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime } = \left (x -3 y x^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \] |
✓ |
✓ |
|
\[ {}\left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \] |
✓ |
✓ |
|
\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \] |
✓ |
✓ |
|
\[ {}x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \] |
✓ |
✓ |
|
\[ {}x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \] |
✓ |
✓ |
|
\[ {}x^{n} y^{\prime } = x^{2 n -1}-y^{2} \] |
✓ |
✓ |
|
\[ {}x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (-n +1\right ) x^{n -1} = 0 \] |
✗ |
✓ |
|
\[ {}x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \] |
✗ |
✗ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime } = -y+2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \] |
✓ |
✓ |
|
\[ {}x^{\frac {3}{2}} y^{\prime } = a +b \,x^{\frac {3}{2}} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {X} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (x^{3}+1\right )^{\frac {2}{3}}+\left (y^{3}+1\right )^{\frac {2}{3}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (4 x^{3}+\operatorname {a1} x +\operatorname {a0} \right )^{\frac {2}{3}}+\left (\operatorname {a0} +\operatorname {a1} y+4 y^{3}\right )^{\frac {2}{3}} = 0 \] |
✓ |
✓ |
|
\[ {}X^{\frac {2}{3}} y^{\prime } = Y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \] |
✓ |
✓ |
|
\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}\left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (\operatorname {a0} +\operatorname {a1} \sin \left (x \right )^{2}\right ) y^{\prime }+\operatorname {a2} x \left (\operatorname {a3} +\operatorname {a1} \sin \left (x \right )^{2}\right )+\operatorname {a1} y \sin \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (1-{\mathrm e}^{x}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (\ln \left (x \right )+1\right )-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+x \,{\mathrm e}^{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+x^{3}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } y+a x +b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+x \,{\mathrm e}^{-x} \left (y+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+f \left (x \right ) = g \left (x \right ) y \] |
✗ |
✗ |
|
\[ {}y^{\prime } y+4 \left (1+x \right ) x +y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = b \cos \left (x +c \right )+a y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = a x +b x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = \sqrt {y^{2}+a^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y = \sqrt {y^{2}-a^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y+x +f \left (y^{2}+x^{2}\right ) g \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime } = x^{2} \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-y+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = -y+x \] |
✓ |
✓ |
|
\[ {}1-y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}\left (-y+x \right ) y^{\prime } = y \left (2 x y+1\right ) \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (-y+x \right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \] |
✓ |
✓ |
|
\[ {}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \] |
✓ |
✓ |
|
\[ {}\left (3-x -y\right ) y^{\prime } = 1+x -3 y \] |
✓ |
✓ |
|
\[ {}\left (3-x +y\right ) y^{\prime } = 11-4 x +3 y \] |
✓ |
✓ |
|
\[ {}\left (y+2 x \right ) y^{\prime }+x -2 y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||