2.47 Problems 4601 to 4700

Table 2.93: Main lookup table

#

ODE

Mathematica result

Maple result

4601

\[ {}y^{\prime \prime } = 0 \]

4602

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

4603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

4604

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

4605

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4606

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

4607

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

4608

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

4609

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

4610

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

4611

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

4612

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

4613

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

4614

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

4615

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

4616

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

4617

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

4618

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

4619

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

4620

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

4621

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

4622

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

4623

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

4624

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

4625

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

4626

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

4627

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]

4628

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]

4629

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]

4630

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

4631

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

4632

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

4633

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

4634

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

4635

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

4636

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

4637

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

4638

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

4639

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

4640

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

4641

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

4642

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

4643

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

4644

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

4645

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

4646

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4647

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

4648

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

4649

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

4650

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

4651

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

4652

\[ {}y^{3} y^{\prime \prime } = k \]

4653

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

4654

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

4655

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

4656

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4657

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

4658

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

4659

\[ {}y^{\prime \prime } = 2 k y^{3} \]

4660

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

4661

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

4662

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

4663

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

4664

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

4665

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

4666

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4667

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

4668

\[ {}y^{\prime \prime } = 2 y^{\prime } y \]

4669

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

4670

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

4671

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

4672

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y^{\prime } y = 0 \]

4673

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y = 0 \]

4674

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \]

4675

\[ {}-a y^{3}-\frac {b}{x^{\frac {3}{2}}}+y^{\prime } = 0 \]

4676

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

4677

\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0 \]

4678

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

4679

\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

4680

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

4681

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

4682

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4683

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

4684

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+1 = 0 \]

4685

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

4686

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

4687

\[ {}\left (1+x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

4688

\[ {}y^{\prime } = a y^{2} x \]

4689

\[ {}y^{2}+y^{2} x +\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

4690

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

4691

\[ {}\frac {x}{y+1} = \frac {y y^{\prime }}{1+x} \]

4692

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

4693

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

4694

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

4695

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

4696

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

4697

\[ {}y^{\prime \prime }+x y = 0 \]

4698

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

4699

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

4700

\[ {}y^{\prime \prime }+x^{2} a y = 1+x \]