2.48 Problems 4701 to 4800

Table 2.95: Main lookup table

#

ODE

Mathematica result

Maple result

4701

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

4702

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

4703

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

4704

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

4705

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

4706

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

4707

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (-n +1\right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (-n +1\right ) x y = 0 \]

4708

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

4709

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

4710

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

4711

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4712

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

4713

\[ {}x y^{\prime \prime }+y = 0 \]

4714

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

4715

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

4716

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

4717

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

4718

\[ {}y^{\prime \prime }+\frac {a y}{x^{\frac {3}{2}}} = 0 \]

4719

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

4720

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

4721

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

4722

\[ {}x^{3} y^{\prime \prime }+y = x^{\frac {3}{2}} \]

4723

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

4724

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

4725

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

4726

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

4727

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

4728

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (-2 x +1\right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

4729

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

4730

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

4731

\[ {}y^{2}+y^{\prime } = \frac {a^{2}}{x^{4}} \]

4732

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{\frac {2}{3}}} = 0 \]

4733

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4734

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

4735

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

4736

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

4737

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

4738

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

4739

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

4740

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

4741

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

4742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

4743

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

4744

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

4745

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

4746

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

4747

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 y x^{3} = 0 \]

4748

\[ {}y^{\prime } = y \]

4749

\[ {}x y^{\prime } = y \]

4750

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

4751

\[ {}\sin \left (x \right ) y^{\prime } = y \ln \left (y\right ) \]

4752

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

4753

\[ {}x y y^{\prime }-x y = y \]

4754

\[ {}y^{\prime } = \frac {2 y^{2} x +x}{x^{2} y-y} \]

4755

\[ {}y^{\prime } y+y^{2} x -8 x = 0 \]

4756

\[ {}y^{\prime }+2 y^{2} x = 0 \]

4757

\[ {}\left (y+1\right ) y^{\prime } = y \]

4758

\[ {}y^{\prime }-x y = x \]

4759

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{\frac {1}{3}} \]

4760

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]

4761

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

4762

\[ {}x^{2} y^{\prime }+3 x y = 1 \]

4763

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

4764

\[ {}2 x y^{\prime }+y = 2 x^{\frac {5}{2}} \]

4765

\[ {}\cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2} \]

4766

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

4767

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

4768

\[ {}x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right ) \]

4769

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+2 x \sqrt {-x^{2}+1} \]

4770

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

4771

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

4772

\[ {}x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

4773

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

4774

\[ {}x^{\prime } = \frac {3 y^{\frac {2}{3}}-x}{3 y} \]

4775

\[ {}y^{\prime }+y = x y^{\frac {2}{3}} \]

4776

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{\frac {3}{2}} \sqrt {y} \]

4777

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

4778

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

4779

\[ {}\left (-y+x \right ) y^{\prime }+x +y+1 = 0 \]

4780

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

4781

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

4782

\[ {}y^{\prime } y = -x +\sqrt {y^{2}+x^{2}} \]

4783

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

4784

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

4785

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

4786

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

4787

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

4788

\[ {}y^{\prime } = y^{2} x -\frac {2 y}{x}-\frac {1}{x^{3}} \]

4789

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

4790

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

4791

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

4792

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

4793

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

4794

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

4795

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

4796

\[ {}y^{\prime \prime }+16 y = 0 \]

4797

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

4798

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

4799

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4800

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]