2.68 Problems 6701 to 6800

Table 2.135: Main lookup table

#

ODE

Mathematica result

Maple result

6701

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]

6702

\[ {}y^{\prime \prime }+y = \delta \left (-2 \pi +t \right )+\delta \left (t -4 \pi \right ) \]

6703

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]

6704

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

6705

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-2 \pi +t \right ) \]

6706

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]

6707

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (-\pi +t \right )+\delta \left (-3 \pi +t \right ) \]

6708

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

6709

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

6710

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

6711

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+8 y \left (t \right )] \]

6712

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )] \]

6713

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right )-9 z \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 10 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )] \]

6714

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )] \]

6715

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right )+t -1, y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )-3 t^{2}, z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+z \left (t \right )+t^{2}-t +2] \]

6716

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right )+{\mathrm e}^{-t} \sin \left (2 t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+9 z \left (t \right )+4 \,{\mathrm e}^{-t} \cos \left (2 t \right ), z^{\prime }\left (t \right ) = y \left (t \right )+6 z \left (t \right )-{\mathrm e}^{-t}] \]

6717

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )-{\mathrm e}^{t}] \]

6718

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )-9 z \left (t \right )-8 \,{\mathrm e}^{-2 t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{5 t}, z^{\prime }\left (t \right ) = -2 y \left (t \right )+3 z \left (t \right )+{\mathrm e}^{5 t}-3 \,{\mathrm e}^{-2 t}] \]

6719

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

6720

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )+4 \sin \left (t \right )+\left (t -4\right ) {\mathrm e}^{4 t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+8 \sin \left (t \right )+\left (2 t +1\right ) {\mathrm e}^{4 t}] \]

6721

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

6722

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

6723

\[ {}\left [x^{\prime }\left (t \right ) = -x \left (t \right )+\frac {y \left (t \right )}{4}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )\right ] \]

6724

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

6725

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )-z \left (t \right )] \]

6726

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), z^{\prime }\left (t \right ) = -2 x \left (t \right )-z \left (t \right )] \]

6727

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )] \]

6728

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

6729

\[ {}\left [x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right )\right ] \]

6730

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right ), y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-2 y \left (t \right )\right ] \]

6731

\[ {}[x^{\prime }\left (t \right ) = 10 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-12 y \left (t \right )] \]

6732

\[ {}[x^{\prime }\left (t \right ) = -6 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )] \]

6733

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-z \left (t \right )] \]

6734

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+10 y \left (t \right )+4 z \left (t \right ), z^{\prime }\left (t \right ) = 5 y \left (t \right )+2 z \left (t \right )] \]

6735

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 3 y \left (t \right )-z \left (t \right )] \]

6736

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )] \]

6737

\[ {}\left [x^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-\frac {3 y \left (t \right )}{2}+3 z \left (t \right ), z^{\prime }\left (t \right ) = \frac {x \left (t \right )}{8}+\frac {y \left (t \right )}{4}-\frac {z \left (t \right )}{2}\right ] \]

6738

\[ {}\left [x^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-\frac {3 y \left (t \right )}{2}+3 z \left (t \right ), z^{\prime }\left (t \right ) = \frac {x \left (t \right )}{8}+\frac {y \left (t \right )}{4}-\frac {z \left (t \right )}{2}\right ] \]

6739

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )-2 z \left (t \right ), z^{\prime }\left (t \right ) = 6 z \left (t \right )] \]

6740

\[ {}\left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}, y^{\prime }\left (t \right ) = x \left (t \right )-\frac {y \left (t \right )}{2}\right ] \]

6741

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+z \left (t \right )] \]

6742

\[ {}\left [x^{\prime }\left (t \right ) = \frac {9 x \left (t \right )}{10}+\frac {21 y \left (t \right )}{10}+\frac {16 z \left (t \right )}{5}, y^{\prime }\left (t \right ) = \frac {7 x \left (t \right )}{10}+\frac {13 y \left (t \right )}{2}+\frac {21 z \left (t \right )}{5}, z^{\prime }\left (t \right ) = \frac {11 x \left (t \right )}{10}+\frac {17 y \left (t \right )}{10}+\frac {17 z \left (t \right )}{5}\right ] \]

6743

\[ {}\left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{3} \left (t \right )-\frac {9 x_{4} \left (t \right )}{5}, x_{2}^{\prime }\left (t \right ) = \frac {51 x_{2} \left (t \right )}{10}-x_{4} \left (t \right )+3 x_{5} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{4}^{\prime }\left (t \right ) = x_{2} \left (t \right )-\frac {31 x_{3} \left (t \right )}{10}+4 x_{4} \left (t \right ), x_{5}^{\prime }\left (t \right ) = -\frac {14 x_{1} \left (t \right )}{5}+\frac {3 x_{4} \left (t \right )}{2}-x_{5} \left (t \right )\right ] \]

6744

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )] \]

6745

\[ {}[x^{\prime }\left (t \right ) = -6 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

6746

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+5 y \left (t \right )] \]

6747

\[ {}[x^{\prime }\left (t \right ) = 12 x \left (t \right )-9 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )] \]

6748

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

6749

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right )] \]

6750

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 2 y \left (t \right )+5 z \left (t \right )] \]

6751

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right )] \]

6752

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )] \]

6753

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 4 z \left (t \right )] \]

6754

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )] \]

6755

\[ {}[x^{\prime }\left (t \right ) = z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

6756

\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

6757

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

6758

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

6759

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+6 y \left (t \right )] \]

6760

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right )] \]

6761

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-8 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

6762

\[ {}[x^{\prime }\left (t \right ) = z \left (t \right ), y^{\prime }\left (t \right ) = -z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )] \]

6763

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-3 z \left (t \right )] \]

6764

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-12 y \left (t \right )-14 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-2 z \left (t \right )] \]

6765

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )-7, y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+5] \]

6766

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+9 y \left (t \right )+2, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+6] \]

6767

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

6768

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

6769

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

6770

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

6771

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

6772

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

6773

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

6774

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

6775

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

6776

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

6777

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

6778

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (-y+x \right ) y^{\prime }+2 x -5 y = 0 \]

6779

\[ {}\left (-y+x \right )^{2} {y^{\prime }}^{2} = y^{2} \]

6780

\[ {}x y {y^{\prime }}^{2}+\left (y^{2} x -1\right ) y^{\prime }-y = 0 \]

6781

\[ {}\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

6782

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

6783

\[ {}x y \left (y^{2}+x^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

6784

\[ {}x {y^{\prime }}^{3}-\left (x^{2}+x +y\right ) {y^{\prime }}^{2}+\left (x^{2}+x y+y\right ) y^{\prime }-x y = 0 \]

6785

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

6786

\[ {}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0 \]

6787

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6788

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6789

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

6790

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6791

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

6792

\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

6793

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

6794

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

6795

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

6796

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6797

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

6798

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

6799

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]

6800

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]