# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \] |
✓ |
✓ |
|
\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \] |
✓ |
✓ |
|
\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \] |
✓ |
✗ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y \left (1+x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y \left (1+x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \] |
✗ |
✗ |
|
\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+y \left (1+x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (1-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t +1, y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+3 t -1] \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{x} \] |
✓ |
✗ |
|
|
|||
|
|||