56.5.16 problem 16

Internal problem ID [8977]
Book : Own collection of miscellaneous problems
Section : section 5.0
Problem number : 16
Date solved : Wednesday, March 05, 2025 at 07:13:33 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (x +2\right ) {\mathrm e}^{4 x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)-24*y(x) = 16-(x+2)*exp(4*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{-6 x} \left (\left (x^{2}+\frac {19}{5} x -20 c_{2} -\frac {19}{50}\right ) {\mathrm e}^{10 x}-20 c_{1} +\frac {40 \,{\mathrm e}^{6 x}}{3}\right )}{20} \]
Mathematica. Time used: 0.232 (sec). Leaf size: 41
ode=D[y[x],{x,2}]+2*D[y[x],x]-24*y[x]==16-(x+2)*Exp[4*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{4 x} \left (-\frac {x^2}{20}-\frac {19 x}{100}+\frac {19}{1000}+c_2\right )+c_1 e^{-6 x}-\frac {2}{3} \]
Sympy. Time used: 0.279 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + 2)*exp(4*x) - 24*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 16,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} e^{- 6 x} + \left (C_{1} - \frac {x^{2}}{20} - \frac {19 x}{100}\right ) e^{4 x} - \frac {2}{3} \]