Internal
problem
ID
[8978]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
17
Date
solved
:
Wednesday, March 05, 2025 at 07:13:35 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)-4*y(t) = 6*exp(-2+2*t); ic:=y(1) = 4, D(y)(1) = 5; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*D[y[t],t]-4*y[t]==6*Exp[2*t-2]; ic={y[1]==4,Derivative[1][y][1]==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*y(t) - 6*exp(2*t - 2) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(1): 4, Subs(Derivative(y(t), t), t, 1): 5} dsolve(ode,func=y(t),ics=ics)