57.1.2 problem 2

Internal problem ID [8986]
Book : First order enumerated odes
Section : section 1
Problem number : 2
Date solved : Wednesday, March 05, 2025 at 07:13:49 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=a \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 9
ode:=diff(y(x),x) = a; 
dsolve(ode,y(x), singsol=all);
 
\[ y = a x +c_{1} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 11
ode=D[y[x],x]==a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a x+c_1 \]
Sympy. Time used: 0.052 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + a x \]