57.1.3 problem 3

Internal problem ID [8987]
Book : First order enumerated odes
Section : section 1
Problem number : 3
Date solved : Wednesday, March 05, 2025 at 07:13:49 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 11
ode:=diff(y(x),x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+c_{1} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 15
ode=D[y[x],x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2}{2}+c_1 \]
Sympy. Time used: 0.051 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {x^{2}}{2} \]