Internal
problem
ID
[9065]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
8
Date
solved
:
Wednesday, March 05, 2025 at 07:18:54 AM
CAS
classification
:
[_linear]
Using Laplace method With initial conditions
ode:=t*diff(y(t),t)+y(t) = sin(t); ic:=y(1) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=t*D[y[t],t]+y[t]==Sin[t]; ic=y[1]==0; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), t) + y(t) - sin(t),0) ics = {y(1): 0} dsolve(ode,func=y(t),ics=ics)