57.3.9 problem 9

Internal problem ID [9066]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 9
Date solved : Wednesday, March 05, 2025 at 07:18:56 AM
CAS classification : [_linear]

\begin{align*} t y^{\prime }+y&=t \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 1.404 (sec). Leaf size: 13
ode:=t*diff(y(t),t)+y(t) = t; 
ic:=y(1) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {t}{2}-\frac {1}{2 t} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 17
ode=t*D[y[t],t]+y[t]==t; 
ic=y[1]==0; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {t^2-1}{2 t} \]
Sympy. Time used: 0.163 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) - t + y(t),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {t}{2} - \frac {1}{2 t} \]