Internal
problem
ID
[9097]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
26
Date
solved
:
Wednesday, March 05, 2025 at 07:20:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = 1+x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]==1+x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)