58.1.27 problem 27

Internal problem ID [9098]
Book : Second order enumerated odes
Section : section 1
Problem number : 27
Date solved : Wednesday, March 05, 2025 at 07:20:41 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2}+x +1 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 37
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = x^2+x+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{2} {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_{1} +x^{2}-x \]
Mathematica. Time used: 0.021 (sec). Leaf size: 54
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]==1+x+x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left (e^{x/2} (x-1) x+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]
Sympy. Time used: 0.163 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - x + y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} - x + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]