Internal
problem
ID
[9100]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
29
Date
solved
:
Wednesday, March 05, 2025 at 07:21:41 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)