58.1.28 problem 28

Internal problem ID [9099]
Book : Second order enumerated odes
Section : section 1
Problem number : 28
Date solved : Wednesday, March 05, 2025 at 07:21:16 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{3}+x^{2}+x +1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 43
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = x^3+x^2+x+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{2} {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_{1} +x^{3}-2 x^{2}-x +6 \]
Mathematica. Time used: 0.022 (sec). Leaf size: 60
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]==1+x+x^2+x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^3-2 x^2-x+c_2 e^{-x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+c_1 e^{-x/2} \sin \left (\frac {\sqrt {3} x}{2}\right )+6 \]
Sympy. Time used: 0.190 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 - x**2 - x + y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{3} - 2 x^{2} - x + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} + 6 \]