59.1.461 problem 476

Internal problem ID [9633]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 476
Date solved : Monday, January 27, 2025 at 06:04:50 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 15

dsolve(x^2*diff(y(x),x$2)-2*x*(x+2)*diff(y(x),x)+(x^2+4*x+6)*y(x)=0,y(x), singsol=all)
 
\[ y = {\mathrm e}^{x} x^{2} \left (c_{2} x +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 21

DSolve[x^2*D[y[x],{x,2}]-2*x*(x+2)*D[y[x],x]+(x^2+4*x+6)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{x+2} x^2 (c_2 x+c_1) \]