59.1.462 problem 477

Internal problem ID [9634]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 477
Date solved : Monday, January 27, 2025 at 06:04:50 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 17

dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(x^2+6)*y(x)=0,y(x), singsol=all)
 
\[ y = x^{2} \left (\sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 37

DSolve[x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(x^2+6)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{2} e^{-i x} x^2 \left (2 c_1-i c_2 e^{2 i x}\right ) \]