59.1.487 problem 503

Internal problem ID [9659]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 503
Date solved : Monday, January 27, 2025 at 06:12:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y&=0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 62

dsolve(diff(y(x),x$2)+x^5*diff(y(x),x)+6*x^4*y(x)=0,y(x), singsol=all)
 
\[ y = -\frac {\left (-c_{1} {\mathrm e}^{-\frac {x^{6}}{6}} x -c_{2} 6^{{1}/{6}}\right ) \left (-x^{6}\right )^{{5}/{6}}+x^{6} c_{2} {\mathrm e}^{-\frac {x^{6}}{6}} \left (\Gamma \left (\frac {5}{6}\right )-\Gamma \left (\frac {5}{6}, -\frac {x^{6}}{6}\right )\right )}{\left (-x^{6}\right )^{{5}/{6}}} \]

Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 53

DSolve[D[y[x],{x,2}]+x^5*D[y[x],x]+6*x^4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{36} e^{-\frac {x^6}{6}} \left (36 c_1 x-6^{5/6} c_2 \sqrt [6]{-x^6} \Gamma \left (-\frac {1}{6},-\frac {x^6}{6}\right )\right ) \]