Internal
problem
ID
[9278]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
108
Date
solved
:
Wednesday, March 05, 2025 at 07:46:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+5*x*(6*x^2+1)*diff(y(x),x)-(-40*x^2+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^2*(1+2*x^2)*D[y[x],{x,2}]+5*x*(1+6*x^2)*D[y[x],x]-(2-40*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*(2*x**2 + 1)*Derivative(y(x), (x, 2)) + 5*x*(6*x**2 + 1)*Derivative(y(x), x) - (2 - 40*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False