59.1.106 problem 108

Internal problem ID [9278]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 108
Date solved : Wednesday, March 05, 2025 at 07:46:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \end{align*}

Maple. Time used: 0.085 (sec). Leaf size: 35
ode:=2*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+5*x*(6*x^2+1)*diff(y(x),x)-(-40*x^2+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} \sqrt {x}}{\left (2 x^{2}+1\right )^{{3}/{2}}}+\frac {c_{2} \operatorname {hypergeom}\left (\left [\frac {1}{4}, 1\right ], \left [-\frac {1}{4}\right ], -2 x^{2}\right )}{x^{2}} \]
Mathematica. Time used: 0.295 (sec). Leaf size: 118
ode=2*x^2*(1+2*x^2)*D[y[x],{x,2}]+5*x*(1+6*x^2)*D[y[x],x]-(2-40*x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {10 K[1]^2+7}{8 K[1]^3+4 K[1]}dK[1]-\frac {1}{2} \int _1^x\frac {30 K[2]^2+5}{4 K[2]^3+2 K[2]}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {10 K[1]^2+7}{8 K[1]^3+4 K[1]}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(2*x**2 + 1)*Derivative(y(x), (x, 2)) + 5*x*(6*x**2 + 1)*Derivative(y(x), x) - (2 - 40*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False