59.1.172 problem 174

Internal problem ID [9344]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 174
Date solved : Wednesday, March 05, 2025 at 07:47:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 65
ode:=x^2*(1+x)*diff(diff(y(x),x),x)-x*(3+10*x)*diff(y(x),x)+30*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 3 c_{2} x^{4} \left (x -\frac {5}{2}\right ) \ln \left (x \right )+\frac {c_{2} x^{6}}{4}+\frac {\left (16 c_{1} -5 c_{2} \right ) x^{5}}{8}+\frac {\left (-80 c_{1} -299 c_{2} \right ) x^{4}}{16}+5 c_{2} x^{3}+\frac {5 c_{2} x^{2}}{4}+\frac {c_{2} x}{4}+\frac {c_{2}}{40} \]
Mathematica. Time used: 0.518 (sec). Leaf size: 125
ode=x^2*(1+x)*D[y[x],{x,2}]-x*(3+10*x)*D[y[x],x]+30*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} (2 x-5) \exp \left (\int _1^x\frac {5-2 K[1]}{2 K[1]^2+2 K[1]}dK[1]-\frac {1}{2} \int _1^x\left (-\frac {7}{K[2]+1}-\frac {3}{K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\frac {4 \exp \left (-2 \int _1^{K[3]}\frac {5-2 K[1]}{2 K[1]^2+2 K[1]}dK[1]\right )}{(5-2 K[3])^2}dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) - x*(10*x + 3)*Derivative(y(x), x) + 30*x*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False