59.1.555 problem 571

Internal problem ID [9727]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 571
Date solved : Monday, January 27, 2025 at 06:13:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 52

dsolve(2*x^2*(1+x)*diff(y(x),x$2)-x*(6-x)*diff(y(x),x)+(8-x)*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {x^{2} \left (\frac {2 \sqrt {x +1}\, c_{2} x}{3}+\left (\ln \left (\sqrt {x +1}-1\right )-\ln \left (\sqrt {x +1}+1\right )+\frac {8 \sqrt {x +1}}{3}\right ) c_{2} +c_{1} \right )}{\left (x +1\right )^{{5}/{2}}} \]

Solution by Mathematica

Time used: 0.225 (sec). Leaf size: 109

DSolve[2*x^2*(1+x)*D[y[x],{x,2}]-x*(6-x)*D[y[x],x]+(8-x)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {2-K[1]}{4 K[1]^2+4 K[1]}dK[1]-\frac {1}{2} \int _1^x\left (\frac {7}{2 (K[2]+1)}-\frac {3}{K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {2-K[1]}{4 K[1]^2+4 K[1]}dK[1]\right )dK[3]+c_1\right ) \]