5.1.71 Problems 7001 to 7100

Table 5.141: First order ode

#

ODE

Mathematica

Maple

15968

\[ {}y^{\prime }-y = t^{2}-2 t \]

15969

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

15970

\[ {}t y^{\prime }+y = t^{2} \]

15971

\[ {}t y^{\prime }+y = t \]

15972

\[ {}x y^{\prime }+y = x \,{\mathrm e}^{x} \]

15973

\[ {}x y^{\prime }+y = {\mathrm e}^{-x} \]

15974

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

15975

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

15976

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

15977

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

15978

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

15979

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

15980

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

15981

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

15982

\[ {}y^{\prime }+x y = x^{3} \]

15983

\[ {}y^{\prime }-x y = x \]

15984

\[ {}y^{\prime } = \frac {1}{y^{2}+x} \]

15985

\[ {}y^{\prime }-x = y \]

15986

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

15987

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

15988

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

15989

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

15990

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

15991

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

15992

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]

15993

\[ {}y^{\prime }+2 t y = 2 t \]

15994

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]

15995

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]

15996

\[ {}\left ({\mathrm e}^{t}+1\right ) y^{\prime }+{\mathrm e}^{t} y = t \]

15997

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]

15998

\[ {}x^{\prime } = x+t +1 \]

15999

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]

16000

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

16002

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

16003

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

16004

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

16005

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

16006

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

16007

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

16008

\[ {}y^{\prime }-5 y = t \]

16009

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

16010

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

16011

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

16012

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

16013

\[ {}y^{\prime }-3 y = 27 t^{2} \]

16014

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

16015

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

16016

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

16017

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]

16018

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]

16019

\[ {}t y^{\prime }+y = \cos \left (t \right ) t \]

16020

\[ {}y^{\prime }+y = t \]

16021

\[ {}y^{\prime }+y = \sin \left (t \right ) \]

16022

\[ {}y^{\prime }+y = \cos \left (t \right ) \]

16023

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

16024

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

16025

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

16026

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

16027

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

16028

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

16029

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

16030

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

16031

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

16032

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

16033

\[ {}3 t^{2}-y^{\prime } = 0 \]

16034

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

16035

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

16036

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

16037

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

16038

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

16039

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

16040

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

16041

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

16042

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

16043

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

16044

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

16045

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

16046

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

16047

\[ {}1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

16048

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

16049

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

16050

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

16051

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

16052

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

16053

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]

16054

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]

16055

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]

16056

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]

16057

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

16058

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]

16059

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]

16060

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]

16061

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

16062

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

16063

\[ {}-2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

16064

\[ {}-4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]

16065

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

16066

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

16067

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

16068

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]