60.1.237 problem 238
Internal
problem
ID
[10251]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
238
Date
solved
:
Monday, January 27, 2025 at 06:41:43 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} \left (x \left (x +y\right )+a \right ) y^{\prime }-y \left (x +y\right )-b&=0 \end{align*}
✓ Solution by Maple
Time used: 0.009 (sec). Leaf size: 91
dsolve((x*(y(x)+x)+a)*diff(y(x),x)-y(x)*(y(x)+x)-b=0,y(x), singsol=all)
\begin{align*}
y &= \frac {a b c_{1} x +x +\sqrt {\left (a +b \right ) \left (-1+\left (a \,x^{2}+b \,x^{2}+a^{2}\right ) c_{1} \right )}}{a^{2} c_{1} -1} \\
y &= \frac {a b c_{1} x +x -\sqrt {\left (a +b \right ) \left (-1+\left (a \,x^{2}+b \,x^{2}+a^{2}\right ) c_{1} \right )}}{a^{2} c_{1} -1} \\
\end{align*}
✓ Solution by Mathematica
Time used: 2.794 (sec). Leaf size: 1598
DSolve[(x*(y[x]+x)+a)*D[y[x],x]-y[x]*(y[x]+x)-b==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to -\frac {-\frac {1}{\frac {a}{a^2+a x^2+b x^2}-\frac {\exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )}{\sqrt {-2 \int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]+c_1}}}+a+x^2}{x} \\
y(x)\to -\frac {-\frac {1}{\frac {a}{a^2+a x^2+b x^2}+\frac {\exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )}{\sqrt {-2 \int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]+c_1}}}+a+x^2}{x} \\
y(x)\to \frac {b x}{a} \\
y(x)\to -\frac {2 \sqrt {2} a^2 x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} a x^2 \left (b+x^2\right ) \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+b \left (\sqrt {2} x^4 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )-2 x^2 \sqrt {-\int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]}\right )+\sqrt {2} a^3 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )}{x \left (\sqrt {2} a x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} b x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} a^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+2 a \sqrt {-\int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]}\right )} \\
y(x)\to -\frac {2 \sqrt {2} a^2 x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} a x^2 \left (b+x^2\right ) \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+b x^2 \left (\sqrt {2} x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+2 \sqrt {-\int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]}\right )+\sqrt {2} a^3 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )}{x \left (\sqrt {2} a x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} b x^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )+\sqrt {2} a^2 \exp \left (\int _1^x\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right )-2 a \sqrt {-\int _1^x-\frac {\exp \left (2 \int _1^{K[2]}\frac {a^2-2 K[1]^2 a-2 b K[1]^2}{a K[1]^3+b K[1]^3+a^2 K[1]}dK[1]\right ) \left (a^2+K[2]^2 a+b K[2]^2\right )}{K[2]}dK[2]}\right )} \\
\end{align*}