60.1.238 problem 239

Internal problem ID [10252]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 239
Date solved : Monday, January 27, 2025 at 06:41:45 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (y x -x^{2}\right ) y^{\prime }+y^{2}-3 y x -2 x^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.042 (sec). Leaf size: 59

dsolve((x*y(x)-x^2)*diff(y(x),x)+y(x)^2-3*x*y(x)-2*x^2=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {c_{1} x^{2}-\sqrt {2 c_{1}^{2} x^{4}+1}}{c_{1} x} \\ y &= \frac {c_{1} x^{2}+\sqrt {2 c_{1}^{2} x^{4}+1}}{c_{1} x} \\ \end{align*}

Solution by Mathematica

Time used: 0.774 (sec). Leaf size: 99

DSolve[(x*y[x]-x^2)*D[y[x],x]+y[x]^2-3*x*y[x]-2*x^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to x-\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x+\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x-\frac {\sqrt {2} \sqrt {x^4}}{x} \\ y(x)\to \frac {\sqrt {2} \sqrt {x^4}}{x}+x \\ \end{align*}